DNA mRNA Transcription Introduction The Central Dogma of Molecular Biology Cell Polypeptide (protein) Translation Ribosome.

Slides:



Advertisements
Similar presentations
Cell Division, Genetics, Molecular Biology
Advertisements

Gene Expression and Control Part 2
Introduction The Central Dogma of Molecular Biology
Cell Division, Genetics, Molecular Biology
From DNA To RNA To Protein. OH O CH 2 Sugar H OH A Nucleotide NH 2 N N N N Base P O OH HO O Phosphate.
Biological Information Flow
The Three T’s 1. Transcription 2. Translation 3. Termination
From gene to protein. DNA:nucleotides are the monomers Proteins: amino acids are the monomers DNA:in the nucleus Proteins:synthesized in cytoplasm.
8.4 DNA Transcription 8.5 Translation
Protein Synthesis The genetic code – the sequence of nucleotides in DNA – is ultimately translated into the sequence of amino acids in proteins – gene.
Lesson Overview 13.1 RNA.
Protein Synthesis (Gene Expression). Review Nucleotide sequence in DNA is used to make proteins that are the key regulators of cell functions. Proteins.
Protein Synthesis The production (synthesis) of polypeptide chains (proteins) Two phases: Transcription & Translation mRNA must be processed before it.
Chapter 13.2 (Pgs ): Ribosomes and Protein Synthesis
Protein Translation From Gene to Protein Honors Biology Ms. Kim.
Protein Synthesis. DNA RNA Proteins (Transcription) (Translation) DNA (genetic information stored in genes) RNA (working copies of genes) Proteins (functional.
Protein Synthesis Transcription and Translation DNA Transcription RNA Translation Protein.
Chapter 13: RNA and Protein Synthesis
Central Dogma DNA  RNA  Protein. …..Which leads to  Traits.
Protein Synthesis Transcription. DNA vs. RNA Single stranded Ribose sugar Uracil Anywhere Double stranded Deoxyribose sugar Thymine Nucleus.
Protein Synthesis The majority of genes are expressed as the proteins they encode. The process occurs in 2 steps: 1. Transcription (DNA---> RNA) 2. Translation.
Protein Synthesis Process that makes proteins
Transcription & Translation Transcription DNA is used to make a single strand of RNA that is complementary to the DNA base pairs. The enzyme used is.
12-3 RNA and Protein Synthesis
DNA mRNA Transcription Introduction The Central Dogma of Molecular Biology Cell Polypeptide (protein) Translation Ribosome.
Protein Synthesis Transcription and Translation DNA Transcription RNA Translation Protein.
RNA AND PROTEIN SYNTHESIS
©2001 Timothy G. Standish 1 Corinthians 1:10 10 Now I beseech you, brethren, by the name of our Lord Jesus Christ, that ye all speak the same thing, and.
Chapter 10: DNA, RNA and Protein Synthesis
Protein Synthesis DNA Transcription and Translation.
Gene Expression. Central Dogma Information flows from: DNA  RNA  Protein Exception: reverse transcriptase (retroviruses) RNA  DNA  RNA  Protein.
Transcription and Translation How genes are expressed (a.k.a. How proteins are made) Biology.
Translation. tRNA acceptor site of amino acid tyrosine Anticodon arm Anticodon: recognizes the codon of the mRNA. The recognition is facilitated by complementing.
DNA mRNA Transcription Chapter 8 The Central Dogma of Molecular Biology Cell Polypeptide (protein) Translation Ribosome.
Microbial Genetics.  DNA replication is semi- conservative:  What does it mean? During cell division, each daughter cell inherits 2 DNA strands, One.
Protein Synthesis.
PROTEIN SYNTHESIS TRANSCRIPTION AND TRANSLATION. TRANSLATING THE GENETIC CODE ■GENES: CODED DNA INSTRUCTIONS THAT CONTROL THE PRODUCTION OF PROTEINS WITHIN.
DNA and Protein Synthesis A blueprint for life. Protein Synthesis is divided into 2 parts in Eukaryotes:Transcription and Translation Transcription is.
©1998 Timothy G. Standish From DNA To RNA To Protein Timothy G. Standish, Ph. D.
Genetic Coding in Cells
Step 2 of protein synthesis: Translation “The players” 1.Transfer RNA (tRNA)  Folded into three-lobed shape (clover-like)  At one lobe, resides an anticodon.
Welcome to class 1/19/16 – 1/20/16  Turn in Check for understanding (3 of them)  Warm up  Notes on RNA and Transcription process  Complete check.
Protein Synthesis Making Proteins from DNA. DNA & the Nucleus DNA cannot leave the nucleus! So how can we get the information for making proteins out.
CHAPTER 10 “HOW PROTEINS ARE MADE”. Learning Targets  I will compare the structure of RNA with that of DNA.  I will summarize the process of transcription.
12-3 RNA and Protein Synthesis Page 300. A. Introduction 1. Chromosomes are a threadlike structure of nucleic acids and protein found in the nucleus of.
Protein Synthesis The Making of Proteins Using the Genetic Information Stored in DNA.
Section 20.2 Gene Expression
Genetics: RNA and Protein Synthesis
Protein synthesis DNA is the genetic code for all life. DNA literally holds the instructions that make all life possible. Even so, DNA does not directly.
copyright cmassengale
PROTEIN SYNTHESIS CHAPTER 10 section 4
How to Make a Protein?.
Protein Synthesis.
Protein Synthesis: Translation
Transcription & Translation.
Biology Chapter 10 Section 1 Part 2
RNA and Protein Synthesis
Transcription Steps to Transcribe DNA:
Protein Synthesis Translation
Protein Synthesis.
Protein Synthesis.
Unit 7: Molecular Genetics
GENE EXPRESSION / PROTEIN SYNTHESIS
Protein Synthesis The genetic code – the sequence of nucleotides in DNA – is ultimately translated into the sequence of amino acids in proteins – gene.
RNA.
DNA & Gene Expression Transcription & Translation
DNA Notes Section 12.3.
Protein Synthesis.
Protein Synthesis.
Presentation transcript:

DNA mRNA Transcription Introduction The Central Dogma of Molecular Biology Cell Polypeptide (protein) Translation Ribosome

Protein Synthesis Flow of Information: DNA RNA Proteins Transcription Translation Transcription is the process by which a molecule of DNA is copied into a complementary strand of RNA. This is called messenger RNA (mRNA) because it acts as a messenger between DNA and the ribosomes where protein synthesis is carried out.

Protein Synthesis Transcription Transcription process RNA polymerase (an enzyme) attaches to DNA at a special sequence that serves as a “start signal”. The DNA strands are separated and one strand serves as a template. The RNA bases attach to the complementary DNA template, thus synthesizing mRNA.

Protein Synthesis: Transcription Transcription process continued The RNA polymerase recognizes a termination site on the DNA molecule and releases the new mRNA molecule. (mRNA leaves the nucleus and travels to the ribosome in the cytoplasm.)

Protein Synthesis: Transcription

DNA Cytoplasm Nucleus Eukaryotic Transcription Export G AAAAAA RNA Transcription Nuclear pores G AAAAAA RNA Processing mRNA

Protein Synthesis: Translation Translation is the process of decoding a mRNA molecule into a polypeptide chain or protein. Each combination of 3 nucleotides on mRNA is called a codon or three-letter code word. Each codon specifies a particular amino acid that is to be placed in the polypeptide chain (protein).

Protein Synthesis: Translation

SUGAR-PHOSPHATE BACKBONE B A S E S H P O O HO O O CH 2 NH 2 N NH N N HOH P O O HO O O CH 2 NH 2 N N N N H P O OH HO O O CH 2 NH 2 N N N N O A Codon Guanine Adenine Arginine

Protein Synthesis: Translation A three-letter code is used because there are 20 different amino acids that are used to make proteins. If a two-letter code were used there would not be enough codons to select all 20 amino acids. That is, there are 4 bases in RNA, so 4 2 (4x 4)=16; where as 4 3 (4x4x4)=64.

Protein Synthesis: Translation

Therefore, there is a total of 64 codons with mRNA, 61specify a particular amino acid. This means there are more than one codon for each of the 20 amino acids. The remaining three codons (UAA, UAG, & UGA) are stop codons, which signify the end of a polypeptide chain (protein). Besides selecting the amino acid methionine, the codon AUG also serves as the “initiator” codon, which starts the synthesis of a protein

Protein Synthesis: Translation

Transfer RNA (tRNA) Each tRNA molecule has 2 important sites of attachment. One site, called the anticodon, binds to the codon on the mRNA molecule. The other site attaches to a particular amino acid. During protein synthesis, the anticodon of a tRNA molecule base pairs with the appropriate mRNA codon.

Protein Synthesis: Translation

Methionine Met-tRNA A C U Anticodon

Protein Synthesis: Translation Ribosome: Are made up of 2 subunits, a large one and a smaller one, each subunit contains ribosomal RNA (rRNA) & proteins. Protein synthesis starts when the two subunits bind to mRNA. The initiator codon AUG binds to the first anticodon of tRNA, signaling the start of a protein.

Protein Synthesis: Translation Ribosome: The anticodon of another tRNA binds to the next mRNA codon, bringing the 2nd amino acid to be placed in the protein. As each anticodon & codon bind together a peptide bond forms between the two amino acids.

Protein Synthesis: Translation Ribosome: The protein chain continues to grow until a stop codon reaches the ribosome, which results in the release of the new protein and mRNA, completing the process of translation.

Protein Synthesis: Translation

A E Large subunit P Small subunit Translation - Initiation fMet UAC GAG...CU-AUG--UUC--CUU--AGU--GGU--AGA--GCU--GUA--UGA-AT GCA...TAAAAAA 5’ mRNA 3’

A E Ribosome P UCU Arg Aminoacyl tRNA Phe Leu Met Ser Gly Polypeptide CCA Translation - Elongation GAG...CU-AUG--UUC--CUU--AGU--GGU--AGA--GCU--GUA--UGA-AT GCA...TAAAAAA 5’ mRNA 3’

A E Ribosome P Phe Leu Met Ser Gly Polypeptide Arg Aminoacyl tRNA UCUCCA Translation - Elongation GAG...CU-AUG--UUC--CUU--AGU--GGU--AGA--GCU--GUA--UGA-AT GCA...TAAAAAA 5’ mRNA 3’

ANYTHING ACID AMINE Protein Synthesis C O OHCN H H H C HOH C H O CN H H H C HH C H O OHCN H H H C HOH Serine C H O OHCN H H H C HH Alanine H C O OHC R N H H Amino Acid H2OH2O

A E Ribosome P CCA Arg UCU Phe Leu Met Ser Gly Polypeptide Translation - Elongation GAG...CU-AUG--UUC--CUU--AGU--GGU--AGA--GCU--GUA--UGA-AT GCA...TAAAAAA 5’ mRNA 3’

A E Ribosome P Translation - Elongation Aminoacyl tRNA CGA Ala CCA Arg UCU Phe Leu Met Ser Gly Polypeptide GAG...CU-AUG--UUC--CUU--AGU--GGU--AGA--GCU--GUA--UGA-AT GCA...TAAAAAA 5’ mRNA 3’

A E Ribosome P Translation - Elongation CCA Arg UCU Phe Leu Met Ser Gly Polypeptide CGA Ala GAG...CU-AUG--UUC--CUU--AGU--GGU--AGA--GCU--GUA--UGA-AT GCA...TAAAAAA 5’ mRNA 3’

5’ 3’ Transcription And Translation In Prokaryotes Ribosome 5’ mRNA RNA Pol.

ACGATACCCTGACGAGCGTTAGCTATCG UGC UAU GGGACUG

Transcription vs. Translation Review Transcription Process by which genetic information encoded in DNA is copied onto messenger RNA Occurs in the nucleus DNA mRNA Translation Process by which information encoded in mRNA is used to assemble a protein at a ribosome Occurs on a Ribosome mRNA protein