Observer Professor Susan Steege

Slides:



Advertisements
Similar presentations
9.3 Rational Functions and Their Graphs
Advertisements

Rational Expressions, Vertical Asymptotes, and Holes.
Holes & Slant Asymptotes
Rational Functions 8-4 Warm Up Lesson Presentation Lesson Quiz
Section 5.2 – Properties of Rational Functions
RATIONAL FUNCTIONS 2.6. RATIONAL FUNCTIONS VERTICAL ASYMPTOTES  To find vertical asymptotes first reduce the function if possible.  Set the denominator.
Section4.2 Rational Functions and Their Graphs. Rational Functions.
ACT Class Openers:
ACT Class Opener: om/coord_1213_f016.htm om/coord_1213_f016.htm
Rational Functions. 5 values to consider 1)Domain 2)Horizontal Asymptotes 3)Vertical Asymptotes 4)Holes 5)Zeros.
Rational Functions 4-2.
9.3 Rational Functions and Their Graphs Rational Function – A function that is written as, where P(x) and Q(x) are polynomial functions. The domain of.
A rational function is a function whose rule can be written as a ratio of two polynomials. The parent rational function is f(x) = . Its graph is a.
 A asymptote is a line the graph of the function gets closer and closer to but does not touch.
Graphing Rational Functions. 2 xf(x)f(x) xf(x)f(x) As x → 0 –, f(x) → -∞.
ACTIVITY 35: Rational Functions (Section 4.5, pp )
Chapter 7 Polynomial and Rational Functions with Applications Section 7.2.
Graphing Rational Functions Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 xf(x)f(x)
Warm up: Get 2 color pencils and a ruler Give your best definition and one example of the following: Domain Range Ratio Leading coefficient.
Algebra 2 Ch.9 Notes Page 67 P Rational Functions and Their Graphs.
Asymptotes.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
Find the zeros of each function.
Multiplying and Dividing Rational Expressions
Adding and Subtracting Rational Expressions
Objective Define and illustrate the use of rational expressions and functions Rational Expressions and Functions Page 532 Rational Expressions and.
Adding and Subtracting Rational Expressions
Lesson 8-3: Graphing Rational Functions
Warm-Up 4 minutes Solve each equation. 1) x + 5 = 02) 5x = 03) 5x + 2 = 0 4) x 2 - 5x = 05) x 2 – 5x – 14 = 06) x 3 + 3x 2 – 54x = 0.
Rational Functions Essential Questions
Holt McDougal Algebra 2 Rational Functions Holt Algebra 2Holt McDougal Algebra 2 How do we graph rational functions? How do we transform rational functions.
Adding and Subtracting Rational Expressions
Calculus Section 2.5 Find infinite limits of functions Given the function f(x) = Find =  Note: The line x = 0 is a vertical asymptote.
Rational Functions Objective: Finding the domain of a rational function and finding asymptotes.
Holt McDougal Algebra Exponential and Logarithmic Equations and Inequalities Solve logarithmic equations. Objectives.
Holt McDougal Algebra 2 Rational Functions Graph rational functions. Transform rational functions by changing parameters. Objectives.
How do we solve exponential and logarithmic equations and equalities?
2.6. A rational function is of the form f(x) = where N(x) and D(x) are polynomials and D(x) is NOT the zero polynomial. The domain of the rational function.
Graphing Rational Expressions. Find the domain: Graph it:
Rational Functions. 6 values to consider 1)Domain 2)Horizontal Asymptotes 3)Vertical Asymptotes 4)Holes 5)Zeros 6)Slant Asymptotes.
Lesson 21 Finding holes and asymptotes Lesson 21 February 21, 2013.
Graphing Rational Functions Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 xf(x)f(x)
Calculus Section 2.5 Find infinite limits of functions Given the function f(x) = Find =  Note: The line x = 0 is a vertical asymptote.
Math Rational Functions Basic Graph Characteri stics Transforma tions Asymptotes vs Holes Solving Equations.
Holt McDougal Algebra Multiplying and Dividing Rational Expressions Simplify. Identify any x-values for which the expression is undefined. Example.
A rational function is a function whose rule can be written as a ratio of two polynomials. The parent rational function is f(x) = . Its graph is a.
Chapter Rational Function. Objectives Graph rational functions. Transform rational functions by changing parameters.
Holt Algebra Rational Functions The values of h and k affect the locations of the asymptotes, the domain, and the range of rational functions whose.
Summarize the Rational Function Task
8.2 Rational Functions and Their Graphs
Rational functions are quotients of polynomial functions.
Section 3.5 Rational Functions and Their Graphs
The Natural Base, e Essential Questions
Rational Functions Essential Questions
Graphing Polynomial Functions
Summarize the Rational Function Task
Rational Functions and Asymptotes
Graphing Rational Functions
Holes & Slant Asymptotes
Simplifying rational expressions
2.6 Section 2.6.
Graph rational functions.
Rational Functions Essential Questions
Graphing Rational Expressions
Rational Functions Section 8.3 Day 2.
Graphing Rational Functions
EQ: What other functions can be made from
Solving and Graphing Rational Functions
Find the zeros of each function.
Presentation transcript:

Observer Professor Susan Steege Lesson Plan MAE4945 Lesson Plan #3 Graphing Rational Functions (Cont.) Joseph Torres April 9, 2015 Cooperating Teacher Chris Bayus Observer Professor Susan Steege

 

Quick Review  

The rational function f(x) = can be transformed by using methods similar to those used to transform other types of functions. 1 x

Like logarithmic and exponential functions, rational functions may have asymptotes. The function f(x) = has a vertical asymptote at x = 0 and a horizontal asymptote at y = 0. 1 x

Identify the zeros and asymptotes of the function. Then graph. Example 4C: Graphing Rational Functions with Vertical and Horizontal Asymptotes Identify the zeros and asymptotes of the function. Then graph. 4x – 12 x – 1 f(x) = 4(x – 3) x – 1 f(x) = Factor the numerator. The numerator is 0 when x = 3. Zero: 3 Vertical asymptote: x = 1 The denominator is 0 when x = 1. The horizontal asymptote is y = = = 4. 4 1 leading coefficient of p leading coefficient of q Horizontal asymptote: y = 4

Identify the zeros and asymptotes of the function. Then graph. Check It Out! Example 4c Identify the zeros and asymptotes of the function. Then graph. 3x2 + x x2 – 9 f(x) = x(3x – 1) (x – 3) (x + 3) f(x) = Factor the numerator and the denominator. Zeros: 0 and – 1 3 The numerator is 0 when x = 0 or x = – . 1 3 Vertical asymptote: x = –3, x = 3 The denominator is 0 when x = ±3. The horizontal asymptote is y = = = 3. 3 1 leading coefficient of p leading coefficient of q Horizontal asymptote: y = 3

In some cases, both the numerator and the denominator of a rational function will equal 0 for a particular value of x. As a result, the function will be undefined at this x-value. If this is the case, the graph of the function may have a hole. A hole is an omitted point in a graph.

Example 5: Graphing Rational Functions with Holes Identify holes in the graph of f(x) = . Then graph. x2 – 9 x – 3 (x – 3)(x + 3) x – 3 f(x) = Factor the numerator. There is a hole in the graph at x = 3. The expression x – 3 is a factor of both the numerator and the denominator. (x – 3)(x + 3) (x – 3) For x ≠ 3, f(x) = = x + 3 Divide out common factors.

Example 5 Continued The graph of f is the same as the graph of y = x + 3, except for the hole at x = 3. On the graph, indicate the hole with an open circle. The domain of f is {x|x ≠ 3}. Hole at x = 3

Check It Out! Example 5 Identify holes in the graph of f(x) = . Then graph. x2 + x – 6 x – 2 (x – 2)(x + 3) x – 2 f(x) = Factor the numerator. There is a hole in the graph at x = 2. The expression x – 2 is a factor of both the numerator and the denominator. For x ≠ 2, f(x) = = x + 3 (x – 2)(x + 3) (x – 2) Divide out common factors.

Check It Out! Example 5 Continued The graph of f is the same as the graph of y = x + 3, except for the hole at x = 2. On the graph, indicate the hole with an open circle. The domain of f is {x|x ≠ 2}. Hole at x = 2

Real World Example

-Horizontal Asymptote -Holes -Graph -Domain   Assignment: -Vertical Asymptote -Horizontal Asymptote -Holes -Graph -Domain