1. 2. Lesson 8.3, For use with pages x – . Graph y = ANSWER

Slides:



Advertisements
Similar presentations
EXAMPLE 3 Standardized Test Practice SOLUTION 8x 3 y 2x y 2 7x4y37x4y3 4y4y 56x 7 y 4 8xy 3 = Multiply numerators and denominators. 8 7 x x 6 y 3 y 8 x.
Advertisements

Multiplying and Dividing Rational Expressions
Rational Expressions, Vertical Asymptotes, and Holes.
Lesson 8-1: Multiplying and Dividing Rational Expressions
Simplify a rational expression
EXAMPLE 3 Simplify an expression by dividing out binomials Simplify x 2 – 3x – 10 x 2 + 6x + 8. State the excluded values. SOLUTION x 2 – 3x – 10 x 2 +
Simplifying a Variable Expression
Solve a compound inequality with and
Division by Polynomials
Example 3 Dividing Mixed Numbers ÷ – 3 19 = 17 6 – Multiply by the reciprocal of 17 6 – 6 – = 3 () 6 – 19 Use rule for multiplying fractions.
Multiplying and Dividing Rational Expressions
2.9 Warm Up 1. Solve 2x2 + 11x = , –7 ANSWER 2
EXAMPLE 2 Rationalize denominators of fractions Simplify
Rational Expressions A rational expression is any expression that consists of a polynomial divided by a nonzero polynomial. Examples of rational expressions:
Rational Expressions. Rational Expressions (5.2) QUOTIENT of 2 polynomial expressions – Ratio (or Fraction) of 2 polynomials – Function with variables.
3.9 Multiplying & Dividing Rational Expressions p
Chapter 9: Rational Expressions Section 9-1: Multiplying and Dividing Rationals 1.A Rational Expression is a ratio of two polynomial expressions. (fraction)
Solving Rational Equations A rational equation is an equation that contains rational expressions. The next two examples show the two basic strategies for.
Simplify a rational expression
EXAMPLE 2 Multiply rational expressions involving polynomials Find the product 3x 2 + 3x 4x 2 – 24x + 36 x 2 – 4x + 3 x 2 – x Multiply numerators and denominators.
3.8 Warm Up 1. (18x³ - 24x² + 12x) ∕ 6x 2. (5x² + 7x – 6) ∕ (x + 2) 3. (9x² + 5x – 6) ∕ (x + 1)
10/24/ Simplifying, Multiplying and Dividing Rational Expressions.
1. √49 2. –√144 Lesson 4.5, For use with pages
Chapter 12 Final Exam Review. Section 12.4 “Simplify Rational Expressions” A RATIONAL EXPRESSION is an expression that can be written as a ratio (fraction)
SECTION 2 MULTIPLYING AND DIVIDING RATIONAL FUNCTIONS CHAPTER 5.
Complete Solutions to Practice Test What are the solutions to the quadratic equation  A. 3, 6  B. 6, 6  C. 3, 12  D. 4, 9  E. -4, -9 Factor.
Graph an equation of an ellipse
5.4 Multiply & Divide Rational Expressions
Multiplying and Dividing Rational Expressions
8 4 Multiply & Divide Rational Expressions
12.5 Warm Up Warm Up Lesson Quiz Lesson Quiz Lesson Presentation Lesson Presentation Multiply and Divide Rational Expressions.
Multiplying and Dividing Rational Expressions
Please complete the Prerequisite Skills on Page 548 #4-12
Solve an inequality using multiplication EXAMPLE 2 < 7< 7 x –6 Write original inequality. Multiply each side by –6. Reverse inequality symbol. x > –42.
8.4 Multiply and Divide Rational Expressions
EXAMPLE 1 Solve a two-step equation Solve + 5 = 11. x 2 Write original equation. + 5 = x – 5 = x 2 11 – 5 Subtract 5 from each side. = x 2 6 Simplify.
Do Now Pass out calculators. Have your homework out ready to check.
Holt McDougal Algebra Multiplying and Dividing Rational Expressions Simplify rational expressions. Multiply and divide rational expressions. Objectives.
8.2 M ULTIPLYING AND D IVIDING R ATIONAL E XPRESSIONS Simplify rational expressions. Multiply and divide rational expressions. Objectives rational expression.
To simplify a rational expression, divide the numerator and the denominator by a common factor. You are done when you can no longer divide them by a common.
Warm-Up The variables x and y vary inversely. Use the given values to write an equation relating x and y. Then find y when x=2: x = 4, y = 3 x = 8, y.
Algebra 2 Lesson 7-2 (Page 368) ALGEBRA 2 LESSON 7-2 Multiplying and Dividing Radical Expressions 7-2.
Graphing Rational Expressions. Find the domain: Graph it:
Section 6.2 Multiplication and Division. Multiplying Rational Expressions 1) Multiply their numerators and denominators (Do not FOIL or multiply out the.
Welcome to Algebra 2 Rational Equations: What do fractions have to do with it?
Warm-Up Exercises Perform the operation. 1. x x + 36 x 2 – x5x x 2 – 6x + 9 · x 2 + 4x – 21 x 2 + 7x ANSWERS x + 3 x – 12 ANSWERS 5 x – 3.
Factor the expression x – 5x2 3. x3 – 125 ANSWER 5x (2 – x)
Holt McDougal Algebra Multiplying and Dividing Rational Expressions Simplify. Identify any x-values for which the expression is undefined. Example.
Multiplying and Dividing Rational Expressions
Do Now: Multiply the expression. Simplify the result.
BELL-WORK  .
EXAMPLE 2 Rationalize denominators of fractions Simplify
8.4 Multiply and Divide Rational Expressions
8.1 Multiplying and Dividing Rational Expressions
Multiplying and Dividing Rational Expressions
Multiplying and Dividing Rational Expressions
Solving Inequalities by Multiplying or Dividing
Without a calculator, simplify the expressions:
Warm-Up (Fractions) Calculator Free. [1] [2] [3] [4]
Simplifying rational expressions
9.4: Rational Expressions
5-Minute Check Lesson 3-7.
Simplifying rational expressions
Multiplying and Dividing Rational Numbers
Splash Screen.
Graphing Rational Expressions
A rational expression is a quotient of two polynomials
Heart of Algebra Lessons 1 & 2
Multiplying and Dividing Rational Numbers
Presentation transcript:

1. 2. Lesson 8.3, For use with pages 565-571 2 x – . Graph y = ANSWER Find the vertical and horizontal asymptotes of y = . 4x + 5 x – 1 ANSWER vertical: x = 1; horizontal: y = 4

8.4 Rationalize Expressions

Factor numerator and denominator. EXAMPLE 1 Simplify a rational expression x2 – 2x – 15 x2 – 9 Simplify : SOLUTION x2 – 2x – 15 x2 – 9 (x +3)(x –5) (x +3)(x –3) = Factor numerator and denominator. (x +3)(x –5) (x +3)(x –3) = Divide out common factor. x – 5 x – 3 = Simplified form ANSWER x – 5 x – 3

EXAMPLE 2 Solve a multi-step problem A company makes a tin to hold flavored popcorn. The tin is a rectangular prism with a square base. The company is designing a new tin with the same base and twice the height of the old tin. Packaging • Find the surface area and volume of each tin. • Calculate the ratio of surface area to volume for each tin. • What do the ratios tell you about the efficiencies of the two tins?

Divide out common factor. EXAMPLE 2 Solve a multi-step problem SOLUTION Old tin New tin STEP 1 S = 2s2 + 4sh S = 2s2 + 4s(2h) Find surface area, S. = 2s2 + 8sh V = s2h V = s2(2h) Find volume, V. = 2s2h STEP 2 S V 2s2 + 4sh = s2h S V 2s2 + 8sh = 2s2h Write ratio of S to V. 2s(s + 4h) = 2s(sh) s(22 + 4h) = s(sh) Divide out common factor. 2s + 4h = sh s + 4h = sh Simplified form

EXAMPLE 2 Solve a multi-step problem STEP 3 2s + 4h sh > s + 4h Because the left side of the inequality has a greater numerator than the right side and both have the same (positive) denominator. The ratio of surface area to volume is greater for the old tin than for the new tin. So, the old tin is less efficient than the new tin.

Divide out common factor. GUIDED PRACTICE for Examples 1 and 2 Simplify the expression, if possible. 2(x + 1) (x + 1)(x + 3) 1. SOLUTION (x +1)(x + 3) 2(x +1) = 2(x + 1) (x + 1)(x + 3) Divide out common factor. = x + 3 2 Simplified form ANSWER x + 3 2

Factor numerator and denominator. GUIDED PRACTICE for Examples 1 and 2 2. 40x + 20 10x + 30 SOLUTION 40x + 20 10x + 30 = 20(2x +1) 10(x + 3) Factor numerator and denominator. 20(2x +1) 10(x + 3) = Divide out common factor. = 2(2x +1) x + 3 Simplified form 2(2x +1) x + 3 ANSWER

Simplified form GUIDED PRACTICE for Examples 1 and 2 3. 4 x(x + 2) SOLUTION x(x + 2) 4 Simplified form x(x + 2) 4 ANSWER

Factor numerator and denominator. GUIDED PRACTICE for Examples 1 and 2 4. x + 4 x 2 –16 SOLUTION (x + 4)(x – 4) x + 4 x 2 –16 (x + 4) = Factor numerator and denominator. (x + 4) (x + 4)(x – 4) = Divide out common factor. 1 x – 4 = Simplified form ANSWER 1 x – 4

Factor numerator and denominator. GUIDED PRACTICE for Examples 1 and 2 5. x2 – 2x – 3 x2 – x – 6 SOLUTION (x – 3)(x + 1) (x – 3)(x + 2) x2 – 2x – 3 x2 – x – 6 = Factor numerator and denominator. = (x – 3)(x + 1) (x – 3)(x + 2) Divide out common factor. x + 1 x + 2 = Simplified form x + 1 x + 2 ANSWER

Factor numerator and denominator. GUIDED PRACTICE for Examples 1 and 2 2x2 + 10x 3x2 + 16x + 5 6. SOLUTION 2x2 + 10x 3x2 + 16x + 5 (3x + 1)(x + 5) 2x(x + 5) = Factor numerator and denominator. (3x + 1)(x + 5) 2x(x + 5) = Divide out common factor. 2x 3x + 1 = Simplified form ANSWER 2x 3x + 1

Find surface area, S. Find volume, V. GUIDED PRACTICE for Examples 1 and 2 7. What If? In Example 2, suppose the new popcorn tin is the same height as the old tin but has a base with sides twice as long. What is the ratio of surface area to volume for this tin? SOLUTION Old tin New tin STEP 1 S = 2s2 + 4sh S = 2 (2s)2 + 4(2s)h Find surface area, S. = 8s2 + 8sh V = s2h V = (2s)2h Find volume, V. = 4s2h

Divide out common factor. GUIDED PRACTICE for Examples 1 and 2 STEP 2 S V 2s2 + 4sh = s2h S V 8s2 + 8sh = 2s2h Write ratio of S to V. 4s(2s + 2h) = 4s(sh) s(2s + 4h) = s(sh) Divide out common factor. = 2s + 4h sh 2s + 4h = sh Simplified form 2s + 4h = sh ANSWER

Multiply numerators and denominators. EXAMPLE 3 Standardized Test Practice SOLUTION 8x 3y 2x y2 7x4y3 4y 56x7y4 8xy3 = Multiply numerators and denominators. 8 7 x x6 y3 y 8 x y3 = Factor and divide out common factors. 7x6y = Simplified form The correct answer is B. ANSWER

Factor numerators and denominators. EXAMPLE 4 Multiply rational expressions x2 + x – 20 3x 3x –3x2 x2 + 4x – 5 Multiply: SOLUTION x2 + x – 20 3x 3x –3x2 x2 + 4x – 5 3x(1– x) (x –1)(x +5) = (x + 5)(x – 4) 3x Factor numerators and denominators. 3x(1– x)(x + 5)(x – 4) = (x –1)(x + 5)(3x) Multiply numerators and denominators. 3x(–1)(x – 1)(x + 5)(x – 4) = (x – 1)(x + 5)(3x) Rewrite 1– x as (– 1)(x – 1). 3x(–1)(x – 1)(x + 5)(x – 4) = (x – 1)(x + 5)(3x) Divide out common factors.

Simplify. Multiply. EXAMPLE 4 Multiply rational expressions ANSWER –x + 4

Write polynomial as a rational expression. EXAMPLE 5 Multiply a rational expression by a polynomial Multiply: x + 2 x3 – 27 (x2 + 3x + 9) SOLUTION x + 2 x3 – 27 (x2 + 3x + 9) = x + 2 x3 – 27 x2 + 3x + 9 1 Write polynomial as a rational expression. (x + 2)(x2 + 3x + 9) (x – 3)(x2 + 3x + 9) = Factor denominator. (x + 2)(x2 + 3x + 9) (x – 3)(x2 + 3x + 9) = Divide out common factors. = x + 2 x – 3 Simplified form ANSWER x + 2 x – 3

Multiply numerators and denominators. GUIDED PRACTICE for Examples 3, 4 and 5 Multiply the expressions. Simplify the result. 3x5 y2 8xy 6xy2 9x3y 8. SOLUTION 3x5 y2 2xy 6xy2 9x3y 18x6y4 72x4y2 = Multiply numerators and denominators. 18 x4 y2 x2 y2 18 4 x4 y2 = Factor and divide out common factors. = x2y2 4 Simplified form

Factor numerators and denominators. GUIDED PRACTICE for Examples 3, 4 and 5 2x2 – 10x x + 3 9. x2– 25 2x2 SOLUTION x + 3 2x2 2x2 – 10x x2– 25 2x(x –5) (x –5)(x +5) = x + 3 2x (x) Factor numerators and denominators. 2x(x –5) (x + 3) = (x –5)(x + 5)2x (x) Multiply numerators and denominators. = 2x(x –5) (x + 3) (x –5)(x + 5)2x (x) Divide out common factors. x + 3 = x(x + 5) Simplified form

Multiply numerators and denominators. GUIDED PRACTICE for Examples 3, 4 and 5 x + 5 10. x2 +x + 1 x3– 1 SOLUTION x2 +x + 1 x + 5 x3– 1 = x2 +x + 1 x + 5 (x – 1) (x2 +x + 1) 1 Factor denominators. = (x + 5) (x2 +x + 1) (x – 1) (x2 +x + 1) Multiply numerators and denominators. (x + 5) (x2 +x + 1) (x – 1) (x2 +x + 1) = Divide out common factors. x + 5 = x – 1 Simplified form

Multiply by reciprocal. EXAMPLE 6 Divide rational expressions Divide : 7x 2x – 10 x2 – 6x x2 – 11x + 30 SOLUTION 7x 2x – 10 x2 – 6x x2 – 11x + 30 7x 2x – 10 x2 – 6x x2 – 11x + 30 = Multiply by reciprocal. 7x 2(x – 5) = (x – 5)(x – 6) x(x – 6) Factor. = 7x(x – 5)(x – 6) 2(x – 5)(x)(x – 6) Divide out common factors. 7 2 = Simplified form ANSWER 7 2

Multiply by reciprocal. EXAMPLE 7 Divide a rational expression by a polynomial Divide : 6x2 + x – 15 4x2 (3x2 + 5x) SOLUTION 6x2 + x – 15 4x2 (3x2 + 5x) 6x2 + x – 15 4x2 3x2 + 5x = 1 Multiply by reciprocal. (3x + 5)(2x – 3) 4x2 = x(3x + 5) 1 Factor. (3x + 5)(2x – 3) = 4x2(x)(3x + 5) Divide out common factors. 2x – 3 4x3 = Simplified form ANSWER 2x – 3 4x3

Multiply by reciprocal. GUIDED PRACTICE for Examples 6 and 7 Divide the expressions. Simplify the result. 4x 5x – 20 x2 – 2x x2 – 6x + 8 11. SOLUTION 4x 5x – 20 x2 – 2x x2 – 6x + 8 4x 5x – 20 x2 – 2x x2 – 6x + 8 = Multiply by reciprocal. 4(x)(x – 4)(x – 2) 5(x – 4)(x)(x – 2) = Factor. 4(x)(x – 4)(x – 2) 5(x – 4)(x)(x – 2) = Divide out common factors. 4 5 = Simplified form

Multiply by reciprocal. GUIDED PRACTICE for Examples 6 and 7 2x2 + 3x – 5 6x (2x2 + 5x) 12. SOLUTION 2x2 + 3x – 5 6x (2x2 + 5x) = 2x2 + 3x – 5 6x (2x2 + 5x) 1 Multiply by reciprocal. (2x + 5)(x – 1) 6x(x)(2 x + 5) = Factor. (2x + 5)(x – 1) 6x(x)(2 x + 5) = Divide out common factors. x – 1 6x2 = Simplified form