Ninth Asian Thermophysical Properties Conference – ATPC 2010, October 19-22, Beijing Specific Heat at the Nanoscale Thomas Prevenslik QED Radiations Discovery.

Slides:



Advertisements
Similar presentations
Nanotechnology Purifying drinking water in the developing world Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Isfahan University of Technology.
Advertisements

Quantum Mechanics and Spin-Valves Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong The 13th IEEE Inter. Conf. on Nanotechnology, August 5-8, Beijing,
Validity of Heat Transfer by Molecular Dynamics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Tribochemistry - HAGI HAGI, October 26-28,
QED Disinfection of Drinking Water in the Developing World Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong 8th Inter. Conf. on Thermal Engineering.
Disinfection of Ebola in the Developing World Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong World Congress and Expo on Nanotechnology and Material.
Validity of Molecular Dynamics Heat Transfer by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong, China.
QED Disinfection of Drinking Water in China Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Inter. Conf. on Water Resource and Environment (WRE.
Flow of Fluids and Solids at the Nanoscale Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong, China Proc. 2nd Conference on Heat Transfer Fluid.
Classical ConceptsEquations Newton’s Law Kinetic Energy Momentum Momentum and Energy Speed of light Velocity of a wave Angular Frequency Einstein’s Mass-Energy.
WORLD TRIBOLOGY CONGRESS 2009, September 6 th to 11th, 2009 —Kyoto, Japan Triboemission and X-rays Thomas Prevenslik Discovery Bay, Hong Kong, China 1.
ECI - NANOFLUIDS: Fundamentals and Applications II, August 15-20, 2010, Montreal QED Induced Heat Transfer Thomas Prevenslik QED Radiations Discovery Bay,
Quantum Mechanics in Nanotechnology Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Isfahan University of Technology - Quantum Mechanics in Nanotechnology.
Nanoscale Heat Transfer by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong ASME: 3rd Micro/Nanoscale Heat and Mass Transfer.
International Conference on Intelligent Computing - ICIC Zhengzhou, August 11-14, 2011 Memristors by Quantum Mechanics Thomas Prevenslik QED Radiations.
Invisible Universe Int. Conf - 29 June – 3 July 2009 — Paris, France Dark Energy and Cosmic Dust Thomas Prevenslik Berlin, Germany Hong Kong, China 1.
Quantum Mechanics and Nanoelectronics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong ICMON 2011 : Inter.l Conf. Micro, Opto, Nanoelectronics,
IEEE Nanomed 2009, October , 2009 —Tainan, Taiwan Nanoparticle Induced DNA Damage Thomas Prevenslik Discovery Bay, Hong Kong, China 1.
Validity of Molecular Dynamics in Computational Nanoscience Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong, China Inter. Conf. on Nanotechnology.
Stability of Nanobubbles by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong 1 Topical Problems of Fluid Mechanics - Institute.
Validity of Molecular Dynamics by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong, China ASME 4th Micro/Nanoscale Heat Transfer.
Nanotechnology in the Disinfection of Drinking Water in China Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Nano - S & T th Congress.
Ninth Asian Thermophysical Properties Conference – ATPC 2010, October 19-22, Beijing Specific Heat at the Nanoscale Thomas Prevenslik QED Radiations Discovery.
WSEAS (HTE08); August 20-22, 2008 — Rhodes Island, Greece Nanofluids by QED Induced Heat Transfer Thomas Prevenslik Discovery Bay, Hong Kong 1.
Nanoscale Heat Transfer in Thin Films Thomas Prevenslik Discovery Bay, Hong Kong, China 1 ASME Micro/Nanoscale Heat / Mass Transfer Int. Conf., Dec ,
Cosmic Dust and Cosmology Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong, China APRIM th Asia-Pacific Regional IAU Meeting - August.
Discovery Bay, Hong Kong
SpinValves by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong NANOSMAT-Asia : Inter. Conf. Surf., Coat., Nano-Materials; Wuhan,
3rd Int. Conf.on Mechanical and Electrical Tech. - ICMET Dalian, August 26-27, 2011 Neuron Synapse by Quantum Mechanics Thomas Prevenslik QED Radiations.
QED Cooling of Electronics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong IEEE NEMS 2014 – 9 th Int. Conf. Nano/Micro Systems, April ,
Unphysical Heat Transfer by Molecular Dynamics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Inter. Conf. Frontiers Mechanical/Materials Engineering.
ASME NanoEngineering for Medicine and Biology (NEMB), Feb , 2010 —Houston DNA Damage by Nanoparticles Thomas Prevenslik QED Radiation Berlin and.
Third Int. Conf. Quantum, Nano, and Micro Tech. (ICQNM 2009) February 1-6, 2009 — Cancun, Mexico Heat Transfer in Thin Films Thomas Prevenslik Berlin,
Thompson’s experiment (discovery of electron) + - V + - Physics at the end of XIX Century and Major Discoveries of XX Century.
Photon Statistics Blackbody Radiation 1.The energy loss of a hot body is attributable to the emission of electromagnetic waves from the body. 2.The.
NanoSafe 10, Nov , 2010 — Minatec, Grenoble, France Nanoparticle Toxicity and Cancer Thomas Prevenslik QED Radiations Hong Kong, China 1.
Heat Transfer in Nanoelectronics by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong InterPACK 2013 Inter. Conf. on Packaging.
Radiation Fundamental Concepts EGR 4345 Heat Transfer.
Quantum Theory & the History of Light
12 th Intersociety Conf. Thermal Phenomenon in Electronic Systems ; June 2-5, 2010, Las Vegas Thermophones by Quantum Mechanics Thomas Prevenslik QED Radiations.
QED The Fourth Mode of Heat Transfer? Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong, China.
Invalidity of Molecular Dynamics in Heat Transfer Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong 2nd Inter. Conf. Nanomaterials: Applcations.
QED: The Fourth Mode of Heat Transfer
Nanofluids by Quantum Mechanics Thomas Prevenslik Discovery Bay, Hong Kong 1.
TRIBOCHEMISTRY - KYOTO, September 2 nd – 4 th, 2009 —Kyoto, Japan Tribochemistry by Quantum Mechanics Thomas Prevenslik Discovery Bay, Hong Kong, China.
The Fourier Law at Macro and Nanoscales Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong 1 ASME 4th Micro/Nanoscale Heat Transfer Conf. (MNHMT-13),
Near-Field Radiation by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong ASME 4th Micro/Nanoscale Heat Transfer Conf. (MNHMT-13),
Nanocomposites by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong 1 Conference on Mechanics of Composites.
Fifth Int. Conf. Thermal Eng. – Theory & Applications - May 10-14, Marrakesh Morroco Nanoscale Heat Transfer by Quantum Mechanics Thomas Prevenslik.
Nanoelectronics by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Microtherm 2013 Microtechnology-Thermal Problems in Electronics.
Molecular Dynamics of Nanowires by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong 1 ASME 4th Micro/Nanoscale Heat Transfer.
QED Heat Transfer Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Inter. Conf. Nanotechnology Modeling and Simulation (ICNMS'16) Prague April.
Evanescent waves cannot exist in the near-field! Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Bremen Workshop on Light Scattering 2016, Bremen,
Shock Waves and High Temperatures? Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Pressure, Energy, Temperature, Extreme Rates (PETER – 2016)
Cosmic Dust and Discovery of Colliding Black Holes Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Gravitational Wave Astronomy Meeting in Paris,
Dark matter does not exist
Cosmology by Cosmic Dust
Superlens by Transformative Optics or QED?
Molecular Dynamics by X-Rays?
MD by Quantum Mechanics
DNA Damage by Nanoparticles
Discovery Bay, Hong Kong
Heat Transfer in Nanoelectronics by Quantum Mechanics
Light-matter interaction in Cosmic Dust
Nanoparticles and Dark Matter
Dust and the Origin of the Universe
Charge Manipulation of Flow in Nanochannels
Invalidity of Thermal Fluctuations at the Nanoscale
Validity of Molecular Dynamics by Quantum Mechanics
Quantum Mechanics and Spin-Valves
1/f Noise by Quantum Mechanics
Presentation transcript:

Ninth Asian Thermophysical Properties Conference – ATPC 2010, October 19-22, Beijing Specific Heat at the Nanoscale Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong 1 Location 306A Board No. 001

Background Currently, specific heat is an intensive thermophysical property independent of quantity or size allowing macroscale data to be used at the nanoscale. Problem Quantum mechanics requires specific heat to vanish at the nanoscale Purpose Propose specific heat is an extensive thermophysical property of a substance depending on quantity or size that vanishes at the nanoscale Ninth Asian Thermophysical Properties Conference – ATPC 2010, October 19-22, Beijing 2

Conservation by QED Absorbed EM energy is conserved by creating QED photons inside the nanostructure - by frequency up or down - conversion to: TIR confinement frequency For a spherical NP having diameter D, QED photons have = 2D f = QED photon frequency E = Planck energy c = light speed n r = refractive index h = Planck’s constant 3

Ninth Asian Thermophysical Properties Conference – ATPC 2010, October 19-22, Beijing Instead, Q QED is prompt non-thermal emission. Q QED is not Stefan-Boltzmann – no high temperatures QED Heat Transfer Replace Fourier Equation by: E = Photon Planck Energy dN/dt = Photon Rate  4 No Heat Cap  T = 0

Ninth Asian Thermophysical Properties Conference – ATPC 2010, October 19-22, Beijing Results Quantum mechanics explains observations at nanoscale that cannot be explained by classical physics Molecular Dynamics Heat transfer simulations invalid for discrete nanostructures Nanofluids Excluding QED emission leads to unphysical results Big Bang Theory QED Redshift in cosmic dust means Universe is not expanding Thin Films (Including GRAPHENE) QED emission negates reduced conductivity by phonons 5

Ninth Asian Thermophysical Properties Conference – ATPC 2010, October 19-22, Beijing 20 min PPT Presentation , “Zero Specific Heat” 6