LMD LMD Science Team CALIPSO – March 2003 1 M.Chiriaco, H.Chepfer, V.Noel, A.Delaval, M.Haeffelin Laboratoire de Météorologie Dynamique, IPSL, France P.Yang,

Slides:



Advertisements
Similar presentations
Lidar observations of mixed-phase clouds Robin Hogan, Anthony Illingworth, Ewan OConnor & Mukunda Dev Behera University of Reading UK Overview Enhanced.
Advertisements

Robin Hogan & Julien Delanoe
Robin Hogan Julien Delanoë Nicola Pounder Chris Westbrook
Robin Hogan, Richard Allan, Nicky Chalmers, Thorwald Stein, Julien Delanoë University of Reading How accurate are the radiative properties of ice clouds.
Robin Hogan Julien Delanoe University of Reading Remote sensing of ice clouds from space.
 nm)  nm) PurposeSpatial Resolution (km) Ozone, SO 2, UV8 3251Ozone8 3403Aerosols, UV, and Volcanic Ash8 3883Aerosols, Clouds, UV and Volcanic.
A New A-Train Collocated Product : MODIS and OMI cloud data on the OMI footprint Brad Fisher 1, Joanna Joiner 2, Alexander Vasilkov 1, Pepijn Veefkind.
Using a Radiative Transfer Model in Conjunction with UV-MFRSR Irradiance Data for Studying Aerosols in El Paso-Juarez Airshed by Richard Medina Calderón.
3D Radiative Transfer in Cloudy Atmospheres: Diffusion Approximation and Monte Carlo Simulation for Thermal Emission K. N. Liou, Y. Chen, and Y. Gu Department.
Earth System Science Teachers of the Deaf Workshop, August 2004 S.O.A.R. High Earth Observing Satellites.
1 An initial CALIPSO cloud climatology ISCCP Anniversary, July 2008, New York Dave Winker NASA LaRC.
Constraining aerosol sources using MODIS backscattered radiances Easan Drury - G2
16/06/20151 Validating the AVHRR Cloud Top Temperature and Height product using weather radar data COST 722 Expert Meeting Sauli Joro.
Figure 2.10 IPCC Working Group I (2007) Clouds and Radiation Through a Soda Straw.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Direct Radiative Effect of aerosols over clouds and clear skies determined using CALIPSO and the A-Train Robert Wood with Duli Chand, Tad Anderson, Bob.
1 CALIPSO Status and Plans Dave Winker Winds Working Group, June 2009, Wintergreen, VA.
Lidar algorithms to retrieve cloud distribution, phase and optical depth Y. Morille, M. Haeffelin, B. Cadet, V. Noel Institut Pierre Simon Laplace SYMPOSIUM.
1 Une description statistique multi-variable des nuages au dessus de l’océan tropical à partir des observations de jour de l’A-train en haute résolution.
Photo courtesy of Paul Lawson/J.H. Bain An Overview of Cirrus Cloud Thinning and Determining Its Scientific Feasibility David L. Mitchell Desert Research.
Bryan A. Baum 1 Ping Yang 2, Andrew Heymsfield 3 1 NASA Langley Research Center, Hampton, VA 2 Texas A&M University, College Station, TX 3 National Center.
Bastiaan van Diedenhoven (Columbia University, NASA GISS) Ann Fridlind, Andrew Ackerman & Brian Cairns (NASA GISS) An investigation of ice crystal sizes.
EARLINET and Satellites: Partners for Aerosol Observations Matthias Wiegner Universität München Meteorologisches Institut (Satellites: spaceborne passive.
Applications and Limitations of Satellite Data Professor Ming-Dah Chou January 3, 2005 Department of Atmospheric Sciences National Taiwan University.
Determination of the optical thickness and effective radius from reflected solar radiation measurements David Painemal MPO531.
Retrieving cloud optical depth and ice particle size using thermal infrared radiometry: Application to the monitoring of thin ice clouds in an arctic environment.
Infrared Interferometers and Microwave Radiometers Dr. David D. Turner Space Science and Engineering Center University of Wisconsin - Madison
Aerosol Optical Depths from Airborne Sunphotometry in INTEX-B/MILAGRO as a Validation Tool for the Ozone Monitoring Instrument (OMI) on Aura J. Livingston.
SEVIRI Height Retrieval Comparison with CALIPSO Mike Pavolonis (NOAA/NESDIS)
Depolarization lidar for water cloud remote sensing 1.Background MS and MC 2.Short overview of the MC model used in this work 3.Depol-lidar for Water Cld.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Characterization of Aerosols using Airborne Lidar, MODIS, and GOCART Data during the TRACE-P (2001) Mission Rich Ferrare 1, Ed Browell 1, Syed Ismail 1,
Topic 7: remote sensing of cloud particles and properties; validation etc.
Intercomparison of SEVIRI data from MSG1 and MSG2 and implications for the GERB data processing Nicolas Clerbaux & RMIB GERB Team. GIST 26, RAL 3 and 4.
1 « TReSS » ATMOSPHERIC OPTICAL REMOTE SENSING TRANSPORTABLE-MOBILE PLATFORM Pierre H. Flamant, Claude Loth Juan Cuesta, Dimitri Edouard, Florian Lapouge*
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Using CALIPSO to Explore the Sensitivity to Cirrus Height in the Infrared.
Numerical simulations of optical properties of nonspherical dust aerosols using the T-matrix method Hyung-Jin Choi School.
Improvement of Cold Season Land Precipitation Retrievals Through The Use of Field Campaign Data and High Frequency Microwave Radiative Transfer Model IPWG.
Cloud optical properties: modeling and sensitivity study Ping Yang Texas A&M University May 28,2003 Madison, Wisconsin.
1 CIMSS/SSEC Effort on the Fast IR Cloudy Forward Model Development A Fast Parameterized Single Layer Infrared Cloudy Forward Model Status and Features.
Introduction 1. Advantages and difficulties related to the use of optical data 2. Aerosol retrieval and comparison methodology 3. Results of the comparison.
Retrieval of Cloud Phase and Ice Crystal Habit From Satellite Data Sally McFarlane, Roger Marchand*, and Thomas Ackerman Pacific Northwest National Laboratory.
Bryan A. Baum, Richard Frey, Robert Holz Space Science and Engineering Center University of Wisconsin-Madison Paul Menzel NOAA Many other colleagues MODIS.
A new method for first-principles calibration
Daily observation of dust aerosols infrared optical depth and altitude from IASI and AIRS and comparison with other satellite instruments Christoforos.
Jetstream 31 (J31) in INTEX-B/MILAGRO. Campaign Context: In March 2006, INTEX-B/MILAGRO studied pollution from Mexico City and regional biomass burning,
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Cloud property retrieval from hyperspectral IR measurements Jun Li, Peng Zhang, Chian-Yi Liu, Xuebao Wu and CIMSS colleagues Cooperative Institute for.
UCLA Vector Radiative Transfer Models for Application to Satellite Data Assimilation K. N. Liou, S. C. Ou, Y. Takano and Q. Yue Department of Atmospheric.
1 CALIPSO VALIDATION and DATA QUALITY IMPROVEMENT EECLAT T0, J. Pelon.
Cloudnet meeting Oct Martial Haeffelin SIRTA Cloud and Radiation Observatory M. Haeffelin, A. Armstrong, L. Barthès, O. Bock, C. Boitel, D.
- 1 - Satellite Remote Sensing of Small Ice Crystal Concentrations in Cirrus Clouds David L. Mitchell Desert Research Institute, Reno, Nevada Robert P.
MODIS, AIRS, and Midlevel Cloud Phase Shaima Nasiri CIMSS/SSEC, UW-Madison Brian Kahn Jet Propulsion Laboratory MURI Hyperspectral Workshop 7-9 June, 2005.
1 Recent advances in CALIPSO cloud retrievals: Progress over the last 7 years Looking ahead to the next 30 ISCCP at 30: City College of New York, 23 April.
Shaima Nasiri University of Wisconsin-Madison Bryan Baum NASA - Langley Research Center Detection of Overlapping Clouds with MODIS: TX-2002 MODIS Atmospheres.
UNIVERSITY OF BASILICATA CNR-IMAA (Consiglio Nazionale delle Ricerche Istituto di Metodologie per l’Analisi Ambientale) Tito Scalo (PZ) Analysis and interpretation.
Retrieval of desert dust aerosols vertical profiles from IASI measurements in the TIR atmospheric window Sophie Vandenbussche, Svetlana Kochenova, Ann-Carine.
The study of cloud and aerosol properties during CalNex using newly developed spectral methods Patrick J. McBride, Samuel LeBlanc, K. Sebastian Schmidt,
Studying the radiative environment of individual biomass burning fire plumes using multi-platform observations: an example ARCTAS case study on June 30,
What Are the Implications of Optical Closure Using Measurements from the Two Column Aerosol Project? J.D. Fast 1, L.K. Berg 1, E. Kassianov 1, D. Chand.
Visible vicarious calibration using RTM
Extinction measurements
CTTH Cloud Top Temperature and Height
Relationships inferred from AIRS-CALIPSO synergy
Cloud Property Retrievals over the Arctic from the NASA A-Train Satellites Aqua, CloudSat and CALIPSO Douglas Spangenberg1, Patrick Minnis2, Michele L.
Robert Wood, Duli Chand, Tad Anderson University of Washington
Robert Wood, Duli Chand, Tad Anderson University of Washington
Robert Wood, Duli Chand, Tad Anderson University of Washington
Mike Pavolonis (NOAA/NESDIS/STAR)
Presentation transcript:

LMD LMD Science Team CALIPSO – March M.Chiriaco, H.Chepfer, V.Noel, A.Delaval, M.Haeffelin Laboratoire de Météorologie Dynamique, IPSL, France P.Yang, Texas University P.Dubuisson, ELICO, France Lidar/Infrared radiometer coupling for a better determination of particle size in ice cloud

LMD LMD Science Team CALIPSO – March Goal : improving split window technique 1.classical split window technique 2.improvement from 532nm lidar : scene identification 3.improvement from lidar depolarisation : shape constrain 4.improvement from 10.6µm lidar : where is the most absorbing layer within the cloud ? Synthesis of 5 cases studies A better determination of particle size in ice cloud

LMD LMD Science Team CALIPSO – March Classical split window technique Sensitivity to crystal sizes and shapes (3) Optical properties (4) Asymmetry factor Single scattering albedo Extinction cross section Brightness temperature difference between 2 IR channels : T B (λ 1 )-T B (λ 2 )=f(T B (λ 1 )) Clear sky Opaque cloudUncertainty on cloud temperature (2) sph. liq 6µm sph. ice 6µm sph. liq 12µm sph. ice 12µm Uncertainty on scene identification (1) T(λ 1 ) T B (λ 1 )-T B (λ 2 )

LMD LMD Science Team CALIPSO – March Improvements (3) Shape Q deduced from lidar depolarization (V.Noël) Radiative transfert (P.Dubuisson, ELICO) Absorption & scattering (4) Optical properties for non spherical particles (P.Yang, Texas Univ.) (1)scene identification (2) cloud temperature Lidar + radiosonde IR radiometer : brightness temperatures Temperature differences between 2 channels Retrieved several possible values of r, depends on the shape hypothesis Best solution for (r,Q) SIMULATIONS MEASUREMENTS improvements

LMD LMD Science Team CALIPSO – March Applications Parasol Calipso Aqua Cloudsat Aura SIRTA 10.6 µm lidar LVT 532 nm lidar LNA TERRA/MODIS Instrumented site of Palaiseau/France : SIRTA λ 1 = 8.65µm λ 2 = 11.15µm λ 3 = 12.05µm distance : 200m ~ IIR

LMD LMD Science Team CALIPSO – March Cloud identification : improvement from 532nm lidar (a) 220K < T cloud < 250K T B,SIRTA > T cloud semi-transparent cloud T B,SIRTA = 265K LNALNA MODISMODIS SIRTA

LMD LMD Science Team CALIPSO – March µm<r <19µm for 0.15 < shape ratio Q < 0.5 Cloud identification : improvement from 532nm lidar (b)  Clear sky temperature fixed owing to lidar  Opaque cloud temperature fixed owing to lidar : cloud top  Each curve corresponds to a cloud defined by a (r, Q) value T 10.5µm -T 12µm T 8.7µm -T 12µm T 8.7µm -T 10.5µm T 10.5µm T 8.7µm

LMD LMD Science Team CALIPSO – March Shape constrain : improvement from lidar depolarization (a) T B,SIRTA = 260K T cloud = 220K T B,SIRTA > T cloud semi-transparent cloud LNALNA MODISMODIS SIRTA

LMD LMD Science Team CALIPSO – March classe I : Q<0.05 classe II : 0.05<Q<0.7 classe III : 0.7<Q<1.05 classe IV : Q>1.05 Depolarization ratio Shape ratio Q ΔP Noël & al, Applied optics, 2002 Shape constrain : improvement from lidar depolarization (b) L R Shape ratio

LMD LMD Science Team CALIPSO – March Cloud identification (backscattering) : 31<r<76µm for 0.15<Q<2 Shape constrain (depolarization) : 31<r<46µm for 0.7<Q<2 Lidar depolarization Shape constrain : improvement from lidar depolarization (c)

LMD LMD Science Team CALIPSO – March Absorption profile : improvement from 10.6 µm lidar (a) 532 nm lidar SIRTA 10.6 µm lidar SIRTA (Average over 5 minutes) Where is the most absorbing layer in the cloud ? Cloud top temperature? Cloud base temperature? Cloud middle temperature?

LMD LMD Science Team CALIPSO – March Absorption profile : improvement from 10.6 µm lidar (b) We want an absorption profile in infrared to estimate the most absorbing layer within the cloud position of the cold foot in split window We finally have Q abs negligible if r>100µm negligible for n<10 3 /m 3 if r<100µm k 0.5 = k 10 (P.Yang) α = n.Q.(π.r²) Q sca,0.5 = 2 for r > 1µm (1) (P.Yang)

LMD LMD Science Team CALIPSO – March Absorption profile : improvement from 10.6 µm lidar (c) 532nm maximum : 8300m +/- 15m 10.6µm maximum : 7900m +/- 50m Q abs maximum : 7300m This difference could change the temperature of opaque cloud in simulations (position of cold foot), and influence the final result of particle size ≠ concentration is not considered : final result of absorption?

LMD LMD Science Team CALIPSO – March Synthesis of 5 cases studied 2002/03/05 31<r<76µm31<r<46µm no measurements 0.7<Q<2 2002/04/02 no solution no solution no measurements 0.05<Q< ∞ 2002/10/08 17<r<19µmno improvement 0.15<Q< /10/14 23<r<57µm23<r<28µm 0.15<Q<0.90.7<Q< /11/06 21<r<57µmr~25µm 0.15<Q<0.9Q=0.9 cloud type (532nm lidar) 3 wavelength constrain shape constrain 10.6µm lidar results Max 532nm : 7000m Max 10.6µm : 7100m Max Q abs,10 : 7500m Max 532nm : 6000m Max 10.6µm : 6000m Max Q abs,10 : 5800m Max 532nm : 8300 Max 10.6µm : 7900 Max Q abs,10 : 7000 semi transparent T=220K T B =260K relatively opaque T=230K T B =239K semi transparent 220<T<250K T B =265K semi transparent 240<T<250K T B =245K semi transparent+low one T high =240K T low =265K T B =252K

LMD LMD Science Team CALIPSO – March Perspectives Further analysis of 10.6µm cases Validation of the method with in situ measurements : data from CRYSTAL-Face field experiment (July 2002) Comparison with method based on more wavelength (Minnis, 1998) Systematic analysis over SIRTA CALIPSO (2005) : application of the method to the first spatial observations