The Network Layer & Routing

Slides:



Advertisements
Similar presentations
What is “Routing”? Routing algorithm that part of the network layer responsible for deciding on which output line to transmit an incoming packet Adaptive.
Advertisements

13 –Routing Protocols Network Layer4-1. Network Layer4-2 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd.
Data Communication and Networks Lecture 11 Internet Routing Algorithms and Protocols December 5, 2002 Joseph Conron Computer Science Department New York.
Routing - I Important concepts: link state based routing, distance vector based routing.
Network Layer-11 CSE401N: Computer Networks Lecture-9 Network Layer & Routing.
1 Dijkstra’s Shortest Path Algorithm Gordon College.
Introduction to Networking Bin Lin TA March 3 rd, 2005 Recital 6.
Routing & IP Routing Protocols
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing with.
Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer The service should be independent of the router.
Katz, Stoica F04 EECS 122: Introduction to Computer Networks Link State and Distance Vector Routing Computer Science Division Department of Electrical.
4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side, delivers.
EEC-484/584 Computer Networks Lecture 9 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
EEC-484/584 Computer Networks Lecture 9 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
4: Network Layer4a-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing.
Announcement r Project 2 extended to 2/20 midnight r Project 3 available this weekend r Homework 3 available today, will put it online.
Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar1 ECSE-4730: Computer Communication Networks (CCN) Network Layer (Routing) Shivkumar.
1 EE 122: Shortest Path Routing Ion Stoica TAs: Junda Liu, DK Moon, David Zats (Materials with thanks to Vern.
Lecture 7 Overview. Two Key Network-Layer Functions forwarding: move packets from router’s input to appropriate router output routing: determine route.
4: Network Layer4a-1 14: Intro to Routing Algorithms Last Modified: 7/12/ :17:44 AM.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.5 Routing algorithms m Link state m Distance.
Announcement r Project 2 due next week! r Homework 3 available soon, will put it online r Recitation tomorrow on Minet and project 2.
EE 122: Intra-domain routing Ion Stoica September 30, 2002 (* this presentation is based on the on-line slides of J. Kurose & K. Rose)
EEC-484/584 Computer Networks Lecture 9 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
1 Announcement #1 r Did you all receive homework #1 and #2? r Homework #3 will be available online during the day r Midterm.
Routing Algorithm March 3 rd, Routing Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links  link cost:
4: Network Layer 4a-1 14: Intro to Routing Algorithms Last Modified: 8/8/ :41:16 PM.
Computer Networking Intra-Domain Routing, Part I RIP (Routing Information Protocol)
Network Layer Goals: understand principles behind network layer services: –routing (path selection) –dealing with scale –how a router works –advanced topics:
1 Week 6 Routing Concepts. 2 Network Layer Functions transport packet from sending to receiving hosts network layer protocols in every host, router path.
Network Layer r Introduction r Datagram networks r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP r What’s inside a router r Routing.
Link-state routing  each node knows network topology and cost of each link  quasi-centralized: each router periodically broadcasts costs of attached.
Introduction to Network Layer. Network Layer: Motivation Can we built a global network such as Internet by extending LAN segments using bridges? –No!
4: Network Layer4a-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing.
Virtual Circuit Network. Network Layer 2 Network layer r transport segment from sending to receiving host r network layer protocols in every host, router.
IP routing. Simple Routing Table svr 4% netstat –r n Routing tables DestinationGatewayFlagsRefcntUseInterface UGH00emd UH10lo0.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
13 – Routing Algorithms Network Layer.
4: Network Layer4-1 Schedule Today: r Finish Ch3 r Collect 1 st Project r See projects run r Start Ch4 Soon: r HW5 due Monday r Last chance for Qs r First.
1 Week 5 Lecture 2 IP Layer. 2 Network layer functions transport packet from sending to receiving hosts transport packet from sending to receiving hosts.
Overview of Internet Routing (I) Fall 2004 CS644 Advanced Topics in Networking Sue B. Moon Division of Computer Science Dept. of EECS KAIST.
1 Computer Networks Lecture 5: Network Layer June 2009.
Routing 1 Network Layer Network Layer goals:  understand principles behind network layer services:  routing (path selection)  how a router works  instantiation.
1 Computer Communication & Networks Lecture 21 Network Layer: Delivery, Forwarding, Routing Waleed.
Internet Routing r Routing algorithms m Link state m Distance Vector m Hierarchical routing r Routing protocols m RIP m OSPF m BGP.
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter4_3.
Switching, Forwarding and Routing. Network layer functions r transport packet from sending to receiving hosts r network layer protocols in every host,
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Internet and Intranet Protocols and Applications Lecture 9 Internet Routing Algorithms and Protocols March 27, 2002 Joseph Conron Computer Science Department.
4: Network Layer4a-1 Distance Vector Routing Algorithm iterative: r continues until no nodes exchange info. r self-terminating: no “signal” to stop asynchronous:
Network Layer (2). Review Physical layer: move bits between physically connected stations Data link layer: move frames between physically connected stations.
4: Network Layer4-1 Chapter 4: Network Layer Last time: r Chapter Goals m Understand network layer principles and Internet implementation r Started routing.
CSE 421 Computer Networks. Chapter 4 Network Layer Thanks to you All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer.
T. S. Eugene Ngeugeneng at cs.rice.edu Rice University1 COMP/ELEC 429 Introduction to Computer Networks Lecture 10: Intra-domain routing Slides used with.
IP tutorial - #2 Routing KAIST Dept. of CS NC Lab.
Network Layer4-1 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol.
Network Layer Goals: Overview:
Network Layer Introduction Datagram networks IP: Internet Protocol
Distance Vector Routing: overview
Network layer functions
Chapter 4 – The Network Layer & Routing
Road Map I. Introduction II. IP Protocols III. Transport Layer
ECE453 – Introduction to Computer Networks
Chapter 4: Network Layer
ECSE-4730: Computer Communication Networks (CCN)
Network Layer (contd.) Routing
Chapter 4: Network Layer
Chapter 4: Network Layer
EE 122: Intra-domain routing: Link State
Presentation transcript:

The Network Layer & Routing application transport network data link physical network data link physical network data link physical network data link physical The Network Layer & Routing network data link physical network data link physical network data link physical network data link physical application transport network data link physical network data link physical application transport network data link physical The network layer moves transport layer segments from host to host in the network, to deliver them to their destination. This layer involves each and every host and router in the network. We will study the key principles and algorithms of routing, with a focus on the Internet Protocol (IP) service model. 4: Network Layer

Network layer functions transport packet from sending to receiving hosts network layer protocols in every host, router three important functions: path determination: route taken by packets from source to destination - routing algorithms switching: move packets from router’s input to appropriate router output call setup: some network architectures require router call setup along path before data flows (what types?) application transport network data link physical network data link physical 4: Network Layer

Virtual circuits the source-to-destination path behaves much like a telephone circuit performance-wise network actions along source-to-destination path call setup, teardown for each call before data can flow each packet carries VC identifier (not destination host ID) every router/switch on source-destination path maintains a “state” for each passing connection Recall: transport-layer connection only involved two end systems link and router resources (bandwidth, buffers) may be dedicated to the VC to get circuit-like performance but… what about start-up delay? 4: Network Layer

Virtual circuits: signaling protocols used to setup, maintain and teardown the VC used in ATM, frame-relay and X.25 not used in the Internet (why?) application transport network data link physical application transport network data link physical 5. Data flow begins 6. Receive data 4. Call connected 3. Accept call 1. Initiate call 2. incoming call 4: Network Layer

Datagram networks: the Internet model no call setup at network layer routers: do not maintain state for the end-to-end connections no network-level concept of a “connection” packets are typically routed using only destination host ID which is carried in the packet packets between same source-destination pair may take different paths application transport network data link physical application transport network data link physical 1. Send data 2. Receive data 4: Network Layer

Routing Routing protocol Graph abstraction for routing algorithms: Goal: determine “good” path (sequence of routers) thru network from source to dest. 5 3 B C 2 5 A 2 1 F 3 Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links link cost: delay, $ cost, or congestion level 1 2 D E 1 “good” path: typically means minimum cost path other def’s possible 4: Network Layer

Routing Algorithm classification Global or decentralized cost information? Global: all routers have complete topology & link cost info “link state” algorithms Decentralized: router knows physically-connected neighbors, link costs to route to neighbors iterative process of computation & exchange of info with neighbors “distance vector” algorithms Static or dynamic? Static: routes change slowly over time Dynamic: routes change more quickly periodic algorithm-driven updates responsive to link cost changes A E D C B F 2 1 3 5 4: Network Layer

4: Network Layer

4: Network Layer

4: Network Layer

4: Network Layer

4: Network Layer

4: Network Layer

Dijsktra’s Algorithm 1 Initialization: 2 N = {A} // Source node is “A” 3 for all nodes v 4 if v adjacent to A 5 then D(v) = c(A,v) 6 else D(v) = infinity 7 8 Loop 9 find w not in N such that D(w) is a minimum 10 add w to N 11 update D(v) for all v adjacent to w and not in N: 12 D(v) = min( D(v), D(w) + c(w,v) ) 13 /* new cost to v is either old cost to v or known 14 shortest path cost to w plus cost from w to v */ 15 until all nodes in N A E D C B F 2 1 3 5 4: Network Layer

Dijkstra’s algorithm: example Step 1 2 3 4 5 start N A AD ADE ADEB ADEBC ADEBCF D(B),p(B) 2,A - D(C),p(C) 5,A 4,D 3,E - D(D),p(D) 1,A - D(E),p(E) infinity 2,D - D(F),p(F) infinity 4,E A E D C B F 2 1 3 5 4: Network Layer

Distance Vector Routing Algorithm iterative: continues until no nodes exchange info. self-terminating: no “signal” to stop asynchronous: nodes need not exchange info/iterate in lock step! distributed: each node communicates only with directly-attached neighbors Distance Table data structure each node has its own row for each possible destination column for each directly-attached neighbor to node example: in node X, for destination Y via neighbor Z: distance from X to Y, via Z as next hop = DX(Y,Z) = c(X,Z) + minw {DZ(Y,w)} 4: Network Layer

Distance Table: example 7 8 1 2 D () A B C D 1 7 6 4 14 8 9 11 5 2 E cost to destination via destination D (C,D) E c(E,D) + min {D (C,w)} D w = 2+2 = 4 D (A,D) E c(E,D) + min {D (A,w)} D w = 2+3 = 5 loop back through E! D (A,B) E c(E,B) + min {D (A,w)} B w = 8+6 = 14 loop back through E! 4: Network Layer

Distance table gives routing table 1 7 6 4 14 8 9 11 5 2 E cost to destination via destination Outgoing link to use, cost E A B C D A,1 D,5 D,4 D,2 destination Distance table Routing table >> next link, cost 4: Network Layer

Distance Vector Algorithm (Bellman-Ford): At all nodes, X: 1 Initialization: 2 for all adjacent nodes v: 3 D (*,v) = infinity /* the * operator means "for all rows" */ 4 D (v,v) = c(X,v) 5 for all destinations, y 6 send min D (y,w) to each neighbor /* w over all X's neighbors */ X X X w 4: Network Layer

Distance Vector Algorithm (cont.): 8 loop 9 wait (until I see a link cost change to neighbor V 10 or until I receive update from neighbor V) 11 12 if (c(X,V) changes by d) 13 /* change cost to all dest's via neighbor v by d */ 14 /* note: d could be positive or negative */ 15 for all destinations y: D (y,V) = D (y,V) + d 16 17 else if (update received from V wrt destination Y) 18 /* shortest path from V to some Y has changed */ 19 /* V has sent a new value for its min DV(Y,w) */ 20 /* call this received new value "newval" */ 21 for the single destination y: D(Y,V) = c(X,V) + newval 22 23 if we have a new min D (Y,w) for any destination Y 24 send new value of min D (Y,w) to all neighbors 25 26 forever X X w X X w X w 4: Network Layer

Comparison of LS and DV algorithms Message complexity LS: with n nodes, E links, O(nE) msgs sent/broadcast DV: exchange between neighbors only convergence time varies Speed of Convergence LS: O(n2) algorithm requires O(nE) msgs may have oscillations DV: convergence time varies may be routing loops count-to-infinity problem poisoned reverse is sometimes successful Robustness: what happens if router malfunctions? LS: node can advertise incorrect link cost each node computes only its own table DV: DV node can advertise incorrect path cost each node’s table used by others errors propagate through the network 4: Network Layer