נתחיל בסגירת חוב... Geometric vision Goal: Recovery of 3D structure – Structure and depth are inherently ambiguous from single views. מבוסס על השקפים.

Slides:



Advertisements
Similar presentations
Epipolar Geometry.
Advertisements

Lecture 11: Two-view geometry
CSE473/573 – Stereo and Multiple View Geometry
MASKS © 2004 Invitation to 3D vision Lecture 7 Step-by-Step Model Buidling.
Two-view geometry.
Lecture 8: Stereo.
Camera calibration and epipolar geometry
Structure from motion.
Computer Vision : CISC 4/689
Review Previous section: – Feature detection and matching – Model fitting and outlier rejection.
Epipolar geometry. (i)Correspondence geometry: Given an image point x in the first view, how does this constrain the position of the corresponding point.
Srikumar Ramalingam Department of Computer Science University of California, Santa Cruz 3D Reconstruction from a Pair of Images.
Structure from motion. Multiple-view geometry questions Scene geometry (structure): Given 2D point matches in two or more images, where are the corresponding.
Stereo and Structure from Motion
Lecture 20: Two-view geometry CS6670: Computer Vision Noah Snavely.
Multiple View Geometry Marc Pollefeys University of North Carolina at Chapel Hill Modified by Philippos Mordohai.
3D Computer Vision and Video Computing 3D Vision Lecture 14 Stereo Vision (I) CSC 59866CD Fall 2004 Zhigang Zhu, NAC 8/203A
Projected image of a cube. Classical Calibration.
May 2004Stereo1 Introduction to Computer Vision CS / ECE 181B Tuesday, May 11, 2004  Multiple view geometry and stereo  Handout #6 available (check with.
Lec 21: Fundamental Matrix
CSE473/573 – Stereo Correspondence
COMP322/S2000/L271 Stereo Imaging Ref.V.S.Nalwa, A Guided Tour of Computer Vision, Addison Wesley, (ISBN ) Slides are adapted from CS641.
Project 4 Results Representation – SIFT and HoG are popular and successful. Data – Hugely varying results from hard mining. Learning – Non-linear classifier.
Wednesday March 23 Kristen Grauman UT-Austin
3-D Scene u u’u’ Study the mathematical relations between corresponding image points. “Corresponding” means originated from the same 3D point. Objective.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
Multi-view geometry. Multi-view geometry problems Structure: Given projections of the same 3D point in two or more images, compute the 3D coordinates.
Computer Vision Spring ,-685 Instructor: S. Narasimhan WH 5409 T-R 10:30am – 11:50am Lecture #15.
Automatic Camera Calibration
Epipolar Geometry and Stereo Vision Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 03/05/15 Many slides adapted from Lana Lazebnik,
Lecture 11 Stereo Reconstruction I Lecture 11 Stereo Reconstruction I Mata kuliah: T Computer Vision Tahun: 2010.
Epipolar Geometry and Stereo Vision Computer Vision ECE 5554 Virginia Tech Devi Parikh 10/15/13 These slides have been borrowed from Derek Hoiem and Kristen.
Structure from images. Calibration Review: Pinhole Camera.
Multi-view geometry.
Recap from Monday Image Warping – Coordinate transforms – Linear transforms expressed in matrix form – Inverse transforms useful when synthesizing images.
Epipolar geometry Epipolar Plane Baseline Epipoles Epipolar Lines
Lecture 04 22/11/2011 Shai Avidan הבהרה : החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
Miniature faking In close-up photo, the depth of field is limited.
Multiview Geometry and Stereopsis. Inputs: two images of a scene (taken from 2 viewpoints). Output: Depth map. Inputs: multiple images of a scene. Output:
Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow.
Single-view geometry Odilon Redon, Cyclops, 1914.
CSE 185 Introduction to Computer Vision Stereo. Taken at the same time or sequential in time stereo vision structure from motion optical flow Multiple.
Bahadir K. Gunturk1 Phase Correlation Bahadir K. Gunturk2 Phase Correlation Take cross correlation Take inverse Fourier transform  Location of the impulse.
Two-view geometry. Epipolar Plane – plane containing baseline (1D family) Epipoles = intersections of baseline with image planes = projections of the.
Geometric Transformations
stereo Outline : Remind class of 3d geometry Introduction
Feature Matching. Feature Space Outlier Rejection.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
Computer vision: models, learning and inference M Ahad Multiple Cameras
3D Reconstruction Using Image Sequence
MASKS © 2004 Invitation to 3D vision Uncalibrated Camera Chapter 6 Reconstruction from Two Uncalibrated Views Modified by L A Rønningen Oct 2008.
John Morris Stereo Vision (continued) Iolanthe returns to the Waitemata Harbour.
Geometry Reconstruction March 22, Fundamental Matrix An important problem: Determine the epipolar geometry. That is, the correspondence between.
Lec 26: Fundamental Matrix CS4670 / 5670: Computer Vision Kavita Bala.
Correspondence and Stereopsis. Introduction Disparity – Informally: difference between two pictures – Allows us to gain a strong sense of depth Stereopsis.
Computer vision: geometric models Md. Atiqur Rahman Ahad Based on: Computer vision: models, learning and inference. ©2011 Simon J.D. Prince.
Multi-view geometry. Multi-view geometry problems Structure: Given projections of the same 3D point in two or more images, compute the 3D coordinates.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry
Epipolar Geometry and Stereo Vision
Think-Pair-Share What visual or physiological cues help us to perceive 3D shape and depth?
Two-view geometry Computer Vision Spring 2018, Lecture 10
Epipolar geometry.
Two-view geometry.
Multiple View Geometry for Robotics
Two-view geometry.
Course 6 Stereo.
Two-view geometry.
Multi-view geometry.
Presentation transcript:

נתחיל בסגירת חוב...

Geometric vision Goal: Recovery of 3D structure – Structure and depth are inherently ambiguous from single views. מבוסס על השקפים של טל הסנר

Geometric vision Goal: Recovery of 3D structure – What cues in the image allow us to do this? Slide credit: Svetlana Lazebnik

Shading [Figure from Prados & Faugeras 2006]

Focus/defocus [figs from H. Jin and P. Favaro, 2002] Images from same point of view, different camera parameters 3d shape / depth estimates

Texture [From A.M. Loh. The recovery of 3-D structure using visual texture patterns. PhD thesis]A.M. Loh. The recovery of 3-D structure using visual texture patterns.

Perspective effects Image credit: S. Seitz

Motion Figures from L. Zhanghttp://

Estimating scene shape “Shape from X”: Shading, Texture, Focus, Motion… Stereo: – shape from “motion” between two views – infer 3d shape of scene from two (multiple) images from different viewpoints scene point optical center image plane Main idea:

Geometry for a Simple Stereo System First, assuming parallel optical axes, known camera parameters (i.e., calibrated cameras): 11 B. Leibe Slide credit: Kristen Grauman

12 B. Leibe baseline optical center (left) optical Center (right) Focal length World point Depth of p image point (left) image point (right) Slide credit: Kristen Grauman

Geometry for a Simple Stereo System Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). We can triangulate via: 13 B. Leibe Similar triangles (p l, P, p r ) and (O l, P, O r ): disparity Slide credit: Kristen Grauman

Disparity ועומק מצלמות הבדל במיקומי הנקודה בתמונות ( disparity ) מרחק מהמצלמות ( depth ) disparity

Depth From Disparity 15 B. Leibe Image I(x,y)Image I´(x´,y´)Disparity map D(x,y) (x´,y´)=(x+D(x,y), y)

General Case With Calibrated Cameras The two cameras need not have parallel optical axes. 16 B. Leibe vs. Slide credit: Kristen Grauman, Steve Seitz

Stereo Correspondence Constraints Given p in the left image, where can the corresponding point p’ in the right image be? 17 B. Leibe Slide credit: Kristen Grauman

Stereo Correspondence Constraints Given p in the left image, where can the corresponding point p’ in the right image be? 18 B. Leibe Slide credit: Kristen Grauman

Stereo Correspondence Constraints 19 B. Leibe Slide credit: Kristen Grauman

Stereo Correspondence Constraints Geometry of two views allows us to constrain where the corresponding pixel for some image point in the first view must occur in the second view. Epipolar constraint: Why is this useful? – Reduces correspondence problem to 1D search along conjugate epipolar lines. 20 B. Leibe epipolar plane epipolar line Slide adapted from Steve Seitz

Epipolar Geometry 21 Epipolar Plane Epipoles Epipolar Lines Baseline Slide adapted from Marc Pollefeys

Epipolar Geometry: Terms Baseline: line joining the camera centers Epipole: point of intersection of baseline with the image plane Epipolar plane: plane containing baseline and world point Epipolar line: intersection of epipolar plane with the image plane All epipolar lines intersect at the epipole. An epipolar plane intersects the left and right image planes in epipolar lines. 22 B. Leibe Slide credit: Marc Pollefeys

Example 23 B. Leibe Slide credit: Kristen Grauman

For a given stereo rig, how do we express the epipolar constraints algebraically? 24 B. Leibe

בניית המטריצה ההכרחית נגדיר עבור מטריצת סיבוב R, הקשר בין מיקום P במערכת הקואורדינטות השמאלית לימנית הוא :

Rotation Matrix Express 3d rotation as series of rotations around coordinate axes by angles Overall rotation is product of these elementary rotations: Slide credit: Kristen Grauman

בניית המטריצה ההכרחית שלושת הוקטורים, ו - נמצאים על אותו המישור : המישור האפיפולרי

Cross Product & Dot Product Vector cross product takes two vectors and returns a third vector that’s perpendicular to both inputs. So here, c is perpendicular to both a and b, which means the dot product = 0. Slide credit: Kristen Grauman

בניית המטריצה ההכרחית שלושת הוקטורים, ו - נמצאים על אותו המישור : המישור האפיפולרי הוא וקטור הניצב למישור מכאן : היות ו - אזי : נציב במשואה ונקבל :

Matrix Form of Cross Product 30 Slide credit: Kristen Grauman

בניית המטריצה ההכרחית נשכתב באמצעות כפל מטריצות – – נגדיר –ונקבל : המטריצה E נקראת המטריצה ההכרחית (Essential Matrix)

המטריצה ההכרחית היות ונקודות במישורי התמונות נתונות בקואורדינטות הומ ', נחליף P ב - p ( שכן זהות עד לכדי כפל בקבוע) הוא ישר במישור התמונה הימנית אשר מובטח כי מכיל את הנקודה E שימושית כאשר נתונות לנו קואורדינטות נקודות במישור התמונה. לנו יש קואורדינטות פיקסלים בתמונה...

Essential Matrix Example: Parallel Cameras d 0 –d 0 For the parallel cameras, image of any point must lie on same horizontal line in each image plane. Slide credit: Kristen Grauman

Essential Matrix Example: Parallel Cameras d 0 –d 0 For the parallel cameras, image of any point must lie on same horizontal line in each image plane. Slide credit: Kristen Grauman

המטריצה היסודית מטריצה היסודית Fundamental Matrix F דומה באופייה למטריצה היסודית אך הפעם ו - בקואורדינטות פיקסלים עבור ו - מטריצות פנימיות של שתי המצלמות חישוב המטריצה היסודית באמצעות " אלג ' שמונה הנקודות "

Fundamental matrix Relates pixel coordinates in the two views More general form than essential matrix: we remove need to know intrinsic parameters If we estimate fundamental matrix from correspondences in pixel coordinates, can reconstruct epipolar geometry without intrinsic or extrinsic parameters Grauman

Computing F from correspondences Cameras are uncalibrated: we don’t know E or left or right M int matrices Estimate F from 8+ point correspondences. Grauman

Computing F from correspondences Each point correspondence generates one constraint on F Grauman We can re-write as:

כיול מערכת סטראו So, where to start with uncalibrated cameras? Need to find fundamental matrix F and the correspondences (pairs of points (u’,v’) ↔ (u,v)). 1) Find interest points in image 2) Compute correspondences 3) Compute epipolar geometry 4) Refine Example from Andrew Zisserman

1) Find interest points Stereo pipeline with weak calibration Grauman

2) Match points only using proximity Stereo pipeline with weak calibration Grauman

Putative matches based on correlation search Grauman

עעעעעעעעעעעעע עעעעעעעעעעעעע עעעעעעעעעעעעע עעעעעעעעע

RANSAC for robust estimation of the fundamental matrix Select random sample of correspondences Compute F using them – This determines epipolar constraint Evaluate amount of support – inliers within threshold distance of epipolar line Choose F with most support (inliers) Grauman

Putative matches based on correlation search Grauman

Pruned matches Correspondences consistent with epipolar geometry Grauman

Resulting epipolar geometry Grauman

אז מה ראינו היום ?

סיכום אנטומיה של מערכת סטראו גיאומטריה אפיפולרית –האפיפול, הישר האפיפולרי, המישור האפיפולרי המטריצה ההכרחית, היסודית וכיול מע ' סטראו

לסיכום : שיר המטריצה יסודית ! The Fundamental Matrix Song

מקורות שקפים מלבד כל שצוין, שקפים רבים מבוססים על אלו של : – B. Leibe – K. Grauman – D. Low – S. Lazebnik – A. Torralba – T. Darrell