S. ChelkowskiSlide 1ET Meeting, Hannover 01/2009.

Slides:



Advertisements
Similar presentations
Stefan Hild for the GEO600 team October 2007 LSC-Virgo meeting Hannover Homodyne readout of an interferometer with Signal Recycling.
Advertisements

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
FINESSE FINESSE Frequency Domain Interferometer Simulation Versatile simulation software for user-defined interferometer topologies. Fast, easy to use.
19. October 2004 A. Freise Automatic Alignment using the Anderson Technique A. Freise European Gravitational Observatory Roma
Department ArtemisObservatoire de la Cote d'Azur1 A Sagnac interferometer with frequency modulation for sensitive saturated absorption (and applications.
Albert-Einstein-Institute Hannover ET filter cavities for third generation detectors ET filter cavities for third generation detectors Keiko Kokeyama Andre.
Cascina, January 25th, Coupling of the IMC length noise into the recombined ITF output Raffaele Flaminio EGO and CNRS/IN2P3 Summary - Recombined.
Ring Laser Gyroscopes Micah Larson April 21, 2005.
Stefan Hild Ilias WG1 meeting, Casina, Januar 2005 Title Scattered Light at GEO 600 Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
SagNAC Interferometry
Optics of GW detectors Jo van den Brand
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Precision Tilt and Radius of Curvature Sensor Using Double-Pass AOM Kyuman Cho Department of Physics Sogang University.
Louis J. Rubbo Neil Cornish and Olivier Poujade. The LISA Simulator Capabilities –Valid for an arbitrary gravitational wave at any frequency in the LISA.
1st ET General meeting, Pisa, November 2008 The ET sensitivity curve with ‘conventional‘ techniques Stefan Hild and Andreas Freise University of Birmingham.
LIGO-G W Where Did the LSC Signals Come From? Fred Raab 27 June 02.
Optical Gyroscope Arman Cingoz 11/3/04. Outline Sagnac Effect Passive Ring Resonator Gyro (Fiber Gyro) Active Ring Resonator (Laser Gyro) Applications.
Generation of squeezed states using radiation pressure effects David Ottaway – for Nergis Mavalvala Australia-Italy Workshop October 2005.
The wave nature of light Interference Diffraction Polarization
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
What are GW’s ?? Fluctuation in the curvature of space time, propagating outward form the source at the speed of light Predicted by Einstein’s GTR Gravitational.
Einstein gravitational wave Telescope Next steps: from technology reviews to detector design Andreas Freise for the ET WG3 working group , 2nd.
Optical Configuration Advanced Virgo Review Andreas Freise for the OSD subsystem.
LIGO-G D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008.
Optical Gyroscopes for Ground Tilt Sensing in Advanced LIGO The need for low frequency tilt sensing The optics in Advanced LIGO’s suspensions must be very.
Environmental noise studies at VIRGO Environmental contributions to Virgo readout noise (C-runs) many sources identified through coherency analyses with.
Squeezed light and GEO600 Simon Chelkowski LSC Meeting, Hannover.
Topology comparison RSE vs. SAGNAC using GWINC S. Chelkowski, H. Müller-Ebhardt, S. Hild 21/09/2009 S. ChelkowskiSlide 1ET Workshop, Erice, 10/2009.
1SBPI 16/06/2009 Heterodyne detection with LISA for gravitational waves parameters estimation Nicolas Douillet.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
LIGO-G0200XX-00-M LIGO Scientific Collaboration1 First Results from the Mesa Beam Profile Cavity Prototype Marco Tarallo 26 July 2005 Caltech – LIGO Laboratory.
1 The Virgo noise budget Romain Gouaty For the Virgo collaboration GWADW 2006, Isola d’Elba.
Some Ideas About a Vacuum Squeezer A.Giazotto INFN-Pisa.
Alignment Tools Used To Locate A Wire And A Laser Beam In The VISA Undulator Project Wire Finder CALIBRATION A special fixture was constructed to calibrate.
S. ChelkowskiSlide 1LSC Meeting, Amsterdam 09/2008.
Einstein gravitational wave Telescope Which optical topologies are suitable for ET? Andreas Freise for the ET WG3 working group MG12 Paris.
M. Mantovani, ILIAS Meeting 7 April 2005 Hannover Linear Alignment System for the VIRGO Interferometer M. Mantovani, A. Freise, J. Marque, G. Vajente.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
Comparison of Laser Interferometry and Atom Interferometry for Gravitational Wave Observations in Space Peter L. Bender JILA, University of Colorado Boulder.
Analysis of the Virgo runs sensitivities Raffaele Flaminio, Romain Gouaty, Edwige Tournefier Summary : - Introduction : goal of the study / Overview on.
Stefan Hild 111th WG1 meeting, Hannover, January 2007 DC-Readout for GEO Stefan Hild for the GEO-team.
Laguerre-Gauss Modes for Future Gravitational Wave Detectors Keiko Kokeyama University of Birmingham 2 nd ET Annual Erice, Sicily, Italy
1 Locking in Virgo Matteo Barsuglia ILIAS, Cascina, July 7 th 2004.
A. Freise1 Phase and alignment noise in grating interferometers Andreas Freise QND Meeting, Hannover
Optical Spring Experiments With The Glasgow 10m Prototype Interferometer Matt Edgar.
FINESSE FINESSE Frequency Domain Interferometer Simulation Andreas Freise European Gravitational Observatory 17. March 2004.
GSFC  JPL Laser Interferometer Space Antenna (LISA) Time-Delay Interferometry with Moving Spacecraft Arrays Massimo Tinto Jet Propulsion Laboratory, California.
Stefan Hild 1GWADW, Elba, May 2006 Experience with Signal- Recycling in GEO 600 Stefan Hild, AEI Hannover for the GEO-team.
Ring Resonator Gyroscope
Interferometer configurations for Gravitational Wave Detectors
Fiber Optic Gyroscope (FOG)
Topology comparison RSE vs. SAGNAC using GWINC
Overview of quantum noise suppression techniques
Interferometric speed meter as a low-frequency gravitational-wave detector Helge Müller-Ebhardt Max-Planck-Institut für Gravitationsphysik (AEI) and Leibniz.
Nergis Mavalvala Aspen January 2005
Fiber Optic Gyroscope Systems Design
Commissioning Progress and Plans
Phase determination in transmitted wave by ptychographical experiments on thin crystals: theoretical modelling. O. Y. Gorobtsov1,2, A. Shabalin1, M. Civita3,4,
Quantum noise reduction techniques for the Einstein telescope
Homodyne readout of an interferometer with Signal Recycling
Mach-Zehnder atom interferometer with nanogratings
Measuring Gravitational Waves with GEO600
Ponderomotive Squeezing Quantum Measurement Group
Workshop on Gravitational Wave Detectors, IEEE, Rome, October 21, 2004
Advanced Virgo Finesse Input File
LIGO, ground-based Gravitational Wave Detectors
Transformations.
Malu Balachandrana, R Rajeshb
Trashketball EOCT Review Unit 5.
Laser Interferometry for a future GRACE follow-on mission
Presentation transcript:

S. ChelkowskiSlide 1ET Meeting, Hannover 01/2009

Overview  Introduction  ET  Sagnac topology  Sagnac effect  Consequences for ET with Sagnac topology  Static effects  Noise couplings  Frequency noise  Seismic noise  Beam jitter noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 2

ET S. ChelkowskiET Meeting, Hannover 01/2009Slide 3

ET  Triangular geometry  Topology currently undefined  Michelson,Mach- Zehnder, Sagnac, etc  Configuration currently undefined S. ChelkowskiET Meeting, Hannover 01/2009Slide 4

Sagnac topology S. ChelkowskiET Meeting, Hannover 01/2009Slide 5 Non-zero area SagnacNear-zero area Sagnac

Sagnac interferometer and effect  Named after Georges Sagnac  Correctly explained only with General Relativity  Rotational induced phase shift S. ChelkowskiET Meeting, Hannover 01/2009Slide 6 Original experimental setup from 1913 Ref: [1] G. B. Malykin, "The Sagnac effect: correct and incorrect explanations", Physics-Uspekhi, Vol.43, (2000), [2] G. E. Stedman, "Ring-laser tests of fundamental physics and geophysics", Reports on Progress in Physics, Vol.60, (1997),

Location dependency S. ChelkowskiET Meeting, Hannover 01/2009Slide 7 Earth rotation Detector location Equator

Sagnac effect today  Lasergyroscopes are used for geodesic measurements to determine variations in the Earth rotation rate  Also used to do seismometry  Current sensitivity: S. ChelkowskiET Meeting, Hannover 01/2009Slide 8 Images with courtesy Laser Gyro Group Wettzell, Germany

Sagnac effect in ET S. ChelkowskiET Meeting, Hannover 01/2009Slide 9 Non-zero area SagnacNear-zero area Sagnac AA = B - C B C

Sagnac effect in ET S. ChelkowskiET Meeting, Hannover 01/2009Slide 10 Analysis involves two effects 1.Static effects due to Earth’s rotation  Much more sensitive than current Laser gyros 2.Noise couplings Frequency noise Seismic noise Beam jitter noise

Static Sagnac effect S. ChelkowskiET Meeting, Hannover 01/2009Slide 11 Location Strasbourg: Arm length of 10km Simulation parameters No longer on dark fringe! 33% of laser power lost in “dark” port 10km A = B - C B C Change arm length to 10068m to achieve dark port condition again! Include Matlab figure which Shows the fringes?

Noise coupling analysis S. ChelkowskiET Meeting, Hannover 01/2009Slide 12 Our aim 10Hz Hild et al., (2008) arXiv: v2

How does strain sensitivity translates into Sagnac phase shift? S. ChelkowskiET Meeting, Hannover 01/2009Slide 13 10km Clockwise propagating beam: Counter-clockwise propagating beam

10km Noise couplings – Frequency noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 14 Non-zero area Sagnac

Noise couplings – Frequency noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 15 A = B - C B C Near-zero area Sagnac

Noise couplings – Seismic noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 16 10km Non-zero area Sagnac

Noise couplings – Seismic noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 17 A = B - C B C Near-zero area Sagnac

Noise couplings – Beam jitter noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 18

Noise couplings – Beam jitter noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 19 10km Non-zero area Sagnac

Noise couplings – Beam jitter noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 20

Noise couplings – Beam jitter noise S. ChelkowskiET Meeting, Hannover 01/2009Slide 21 A = B - C B C Near-zero area Sagnac

Conclusion  Two possible solutions for ET with Sagnac topology  Non-zero area Sagnac  Near Zero area Sagnac  Noise coupling analysis performed for both cases  Near-zero area Sagnac performs better!  Seismic noise and frequency noise coupling are fine  Only beam alignment has stringent requirement S. ChelkowskiET Meeting, Hannover 01/2009Slide 22