1 Retrospect of GALLEX / GNO Till Kirsten Max-Planck-Institut für Kernphysik Heidelberg / Germany 1Retrospect 2Recent update 3Why did we stop?

Slides:



Advertisements
Similar presentations
E. Bellotti for the GNO Collaboration
Advertisements

Riunione Settembre 2007 Gruppo 2 Inizio presa dati 2007: Auger, Borexino, Agile, Pamela Rivelatore on 2008: Gerda, Icarus, Opera,Warp, Glast, Antares,
Neutrino oscillations/mixing
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Takaaki Kajita ICRR, Univ. of Tokyo Nufact05, Frascati, June 2005.
Recent results from Borexino
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Source Neutrino Experiments
1 B.Ricci* What have we learnt about the Sun from the measurement of 8B neutrino flux? Experimental results SSM predictions SSM uncertainties on  (8B)
Solar & Atmospheric. June 2005Steve Elliott, NPSS Outline Neutrinos from the Sun The neutrinos Past experiments What we know and what we want to.
October 3, 2003IFIC, UVEG-CSIC A road map to solar fluxes, osc. param., and test for new physics Carlos Pena Garay IAS ~
8/5/2002Ulrich Heintz - Quarknet neutrino puzzles Ulrich Heintz Boston University
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Study of e + e  collisions with a hard initial state photon at BaBar Michel Davier (LAL-Orsay) for the BaBar collaboration TM.
Chapter three Sun’s model Major contributions in building the Sun’s model have been made by Eddington (1930’s), Hoyle (1950’s),Bahcall, Clayton (1980’s)
Neutrino Physics - Lecture 4 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Neutrinos from the primary proton- proton fusion process in the Sun pp neutrinos constitute nearly the entirety of solar neutrino flux Secondary neutrinos.
Zachary Robinson Phys 406.  What creates the sun’s energy? ◦ Composition of Sun ◦ Fusion in the Sun (and other stars)  Creation of the elements  Studying.
The Importance of Low-Energy Solar Neutrino Experiments Thomas Bowles Los Alamos National Laboratory Markov Symposium Institute for Nuclear Research 5/13/05.
Neutrinos as Probes: Solar-, Geo-, Supernova neutrinos; Laguna
Aldo IanniNNN05 April 8, Status and future prospects of Gran Sasso Aldo Ianni INFN Gran Sasso Laboratory NNN05 Aussois, April 7-9.
Solar Neutrinos Dr Robert Smith Astronomy Centre University of Sussex.
Results from Solar Neutrino Radiochemical Experiments (with main emphasis on Gallium) Neutrino 2004, Paris June 2004 Carla Maria Cattadori INFN Milano.
GNO and the pp - Neutrino Challenge  T.Kirsten/GNO Till A. Kirsten Max-Planck-Institut für Kernphysik, Heidelberg for the GNO Collaboration NDM03 Nara/Japan.
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
STA Lecture 161 STA 291 Lecture 16 Normal distributions: ( mean and SD ) use table or web page. The sampling distribution of and are both (approximately)
Solar Neutrinos Perspectives and Objectives Mark Chen Queen’s University and Canadian Institute for Advanced Research (CIFAR)
Results from Sudbury Neutrino Observatory Huaizhang Deng University of Pennsylvania.
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration.
238 U (4.47  10 9 years) 226 Ra (1600 years) 222 Rn (3.82 days) 218 Po (3.10 mins) 214 Pb (26.8 mins) 214 Bi (19.9 mins) 210 Tl (1.30 mins) 214 Po (164.
Rare B  baryon decays Jana Thayer University of Rochester CLEO Collaboration EPS 2003 July 19, 2003 Motivation Baryon production in B decays Semileptonic.
Michael Smy UC Irvine Solar and Atmospheric Neutrinos 8 th International Workshop on Neutrino Factories, Superbeams & Betabeams Irvine, California, August.
The Earth Matter Effect in the T2KK Experiment Ken-ichi Senda Grad. Univ. for Adv. Studies.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
Monday, Feb. 24, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #11 Monday, Feb. 24, 2003 Dr. Jae Yu 1.Brief Review of sin 2  W measurement 2.Neutrino.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
Yasuhiro Kishimoto for KamLAND collaboration RCNS, Tohoku Univ. September 12, 2007 TAUP 2007 in Sendai.
The Standard Solar Model and Experiments Predictions versus experiments Uncertainties in predictions Challenges and open questions BP00: astro-ph/
Wednesday, Feb. 14, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #6 Wednesday, Feb. 14, 2007 Dr. Jae Yu 1.Neutrino Oscillation Formalism 2.Neutrino.
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
Analysis of Alpha Background in SNO Data Using Wavelet Analysis
C.Vigorito, University & INFN Torino, Italy 30 th International Cosmic Ray Conference Merida, Mexico Search for neutrino bursts from Gravitational stellar.
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
The Troublesome Kid An introductory course on neutrino physics (III) J.J. Gómez-Cadenas IFIC-Valencia Summer Student School CERN, July,2006.
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
1 New Results on  (3770) and D Mesons Production and Decays From BES Gang RONG (for BES Collaboration) Presented by Yi-Fang Wang Charm07 Cornell University,
Determination of activity of 51 Cr source on gamma radiation measurements V.V.Gorbachev, V.N.Gavrin, T.V.Ibragimova, A.V.Kalikhov, Yu.M.Malyshkin,A.A.Shikhin.
JPS 2003 in Sendai Measurement of spectral function in the decay 1. Motivation ~ Muon Anomalous Magnetic Moment ~ 2. Event selection 3. mass.
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
SAGE: status and future SAGE: V.N. Gavrin Institute for Nuclear Research of the Russian Academy of Sciences, Moscow.
A screening facility for next generation low-background experiments Tom Shutt Case Western Reserve University.
Birth of Neutrino Astrophysics
P Spring 2002 L18Richard Kass The Solar Neutrino Problem M&S Since 1968 R.Davis and collaborators have been measuring the cross section of:
Solar Neutrinos By Wendi Wampler. What are Neutrinos? Neutrinos are chargeless, nearly massless particles Neutrinos are chargeless, nearly massless particles.
Solar Neutrino Results from SNO
September 10, 2002M. Fechner1 Energy reconstruction in quasi elastic events unfolding physics and detector effects M. Fechner, Ecole Normale Supérieure.
Center for Neutrino Physics Source Neutrino Experiments Jonathan Link Center for Neutrino Physics Virginia Tech NuFact 2016.
Neutrino oscillations with radioactive sources and large detectors Wladyslaw H. Trzaska on behalf of: Yu.N. Novikov, T. Enqvist, A.N. Erykalov, F. v.Feilitzsch,
News from the Sudbury Neutrino Observatory Simon JM Peeters July 2007 o SNO overview o Results phases I & II o hep neutrinos and DSNB o Update on the III.
Recent results on non-DDbar decays of  (3770) at BES HaiLong Ma [For BES Collaboration] The IVIIth Rencontres de Moriond session devoted to QCD AND HIGH.
Solar neutrino physics The core of the Sun reaches temperatures of  15.5 million K. At these temperatures, nuclear fusion can occur which transforms 4.
Solar Neutrinos on the beginning of 2017
IBD Detection Efficiencies and Uncertainties
RAPID/IES Calibration Status Rutherford Appleton Lab
SOLAR ATMOSPHERE NEUTRINOS
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
Solar Neutrino Problem
Solar neutrinos: form their production to their detection
Davide Franco for the Borexino Collaboration Milano University & INFN
Presentation transcript:

1 Retrospect of GALLEX / GNO Till Kirsten Max-Planck-Institut für Kernphysik Heidelberg / Germany 1Retrospect 2Recent update 3Why did we stop?

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, GALLEX / GNO, SAGE Radiochemical Method (product accumulation) Ga 71 + e  Ge 71 + e - Low threshold! (0.233 MeV) recall: Cl- experiment 1 RETROSPECT

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Purpose: detection of low energy solar neutrinos 71 Ga( e,e) 71 Ge (E thr = 233 keV) Basic interaction: EC,  = days  signal composition: Technique: Expected signal (SSM):  9 71 Ge counts detected per extraction Radiochemical Target: 103 tons of GaCl 3 acidic solution containing 30 tons of natural gallium Chemical extraction of 71 Ge every 3-4 weeks Detection of 71 Ge decay with gas proportional counters Tot: SNU 72 SNU 33 SNU 9 SNU 12 SNU 8 B 10% CNO 7% 7 Be 26% pp+pep 57% Conception of the Gallium Neutrino Experiment GALLEX (later GNO)

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Why sub-MeV Neutrinos?  98 % of all solar neutrinos are sub-MeV (  7 ~ 7 %,  pp ~ 91 % ). The pp- neutrino flux is coupled to the solar luminosity. It is a fundamental astrophysical parameter that must definitely be measured, as precisely as possible. Stringent limitations (or obser- vation) of departures from the standard solar model can be obtained if the flux of pp neutrinos is deduced, provided that, as it is now possible, neutrino properties are properly folded in.

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15,  Below ~1-2 MeV, the vacuum oscillation domain takes over from the matter oscillation domain at > 2 MeV. Also there could be hidden effects only at < 2 MeV from C. Pena-Garay

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Radiochemical experiments  cumulative measurement of the integral solar neutrino interaction rate (as opposed to real-time event detection)  no spectral or directional information After long time operation of these first generation experiments (Cl, Ga), the statistical errors equal the intrinsic systematic errors. The success of these experiments implies their end. However, they have been crucial in paving the way into the excitement of the third millenium!

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, May 1991 – May 1992 Construction of the detector GALLEX I data taking 15 Solar runs, 5 Blanks PL B285 (1992) 376 PL B285 (1992) 390 Jun 1994 – Oct st 51 Cr source experiment PL B342 (1995) 440 Oct 1995 – Feb nd source 51 Cr experiment PL B420 (1998) 114 Feb 1997 – Apr 1997Test of the detector with 71 As PL B436 (1998) 158 Apr 1998 – Apr 2003 GNO data taking 83.4 ± 19 SNU GALLEX Final Result 1594 days – 65 runs: 77.5 ± 7.7 SNU Feb. 1997End of Solar Data Taking PL B447 (1999) 127 PL B490 (2000) 16 PLB B616(2005)174 GALLEX/GNO Time Table

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Granada, June 8th, 1992 GALLEX announces first observation of solar pp-neutrinos at „Neutrino 92“

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, de Rujula

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, GALLEX RESULT IMPLICATIONS (1992) PL B285 (1992) 376  60 % of the SSM expectation  Definite deficit of 7 Be (or pp-) neutrinos observed  105 % of pp- expectation  Hydrogen fusion in the solar interior experimentally observed

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Significance of Deficit in Time

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, GALLEX Final Result 1594 days – 65 runs: 77.5 ± 7.7 SNU

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Cr source experiments

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Cr source results

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Arsenic Tests Repeated tests under variable and purposely unfavorable conditions respective to the  standing time  mixing- and extraction conditions  method and magnitude of carrier addition to exclude witholdings (classical or ‘hot-atom’-effects) Method Triple-batch comparison  As atoms added to: Tank sample External sample Calibration sample (  -spectrom.) Result: Recovery 99+ %

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, GALLEX 65 Solar runs = 1594 d 23 Blank runs GNO 58 Solar runs = 1713 d 12 Blank runs –5.3 ± 2.5 SNU 77.5 ± 6.2 ± 4.5 SNU 51 Cr source-, 71 As experiments GALLEX + GNO results

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, GNO 62.9 ± SNU GALLEX77.5 ± SNU GALLEX+GNO69.3 ± 5.5 SNU SAGE 66.9 ± SNU Range of SSM predicted rates: No oscillations: 122 – 131 SNU With oscillations 68 – 72 SNU (global fit) FINAL RESULTS

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, RECENT UPDATE Results of a recent complete re-analysis of the Gallex data * (using ~10 5 Ge-decays per counter) not allowed before completion of the low rate measurment phase (solar runs) - Improved Rn-cut efficiency (multi-year low-rate - Counter efficiency error reduction after full calibration experiment) - full PSA instead of RTA Also for Cr-source data -Counter efficiency error reduction after full calibration (as above) - solar subtraction to include also GNO data * F. Kaether, PhD Thesis, Heidelberg University, July 2007

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, GALLEX Periods (new vs. old) old (RTA) new (PSA ect.)

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, GALLEX77.5 ± SNU re-evaluated73.1 ± SNU GNO (unchanged)62.9 ± SNU GALLEX+GNO69.3 ± 5.5 SNU re-evaluated 67.5 ± 5.1 SNU Updated Results

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Cr- source update Mean S1+S2: 93 ± 8% (1  ) Gallex PL (1998) Re-evaluated: 88 ± 8% (1  ) Thesis Kaether (2007) The expectation value for ground state only is 95 ± 1% Bahcall PR C (1997) Our 71 As-experiment excludes Ge-yield errors >1% Consequences  The excited state contribution is probably close to 0, instead of (5 ± 3)% as estimated by Bahcall. Supported also by the SAGE Cr-source result.  The 71 Ge production rate prediction on Ga (without oscillatons) must be reduced by ~2 SNU from 7 Be- (32.7 SNU instead of 34.8 SNU). [no change for pp- ]

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Oscillation parameters If the LMA(MSW) solution is the correct explanation of the SNO/SK data, then vacuum oscillations must dominate below 1 MeV and the mixing angle is estimated as  = 32  1.6 degrees (B-PG04) From our data we extract the e-e survival probability P ee for pp-neutrinos after subtraction of the 8 B and 7 Be contributions based on the experimentally deter- mined 8 B- (SNO/SK) and 7 Be- (Borexino) neutrino fluxes as P ee (pp only) = 0.52 ± 0.12 THE RESULTS IMPLY THE EXPERIMENTAL VERIFI- CATION OF THE SOLAR MODEL AND OF THE NEUTRINO OSCILLATION MECHANISMNS AT sub-MeV ENERGIES THAT ARE OTHERWISE INACCESSIBLE

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Partitioning of the Gallium Cake SNUP ee Experim. measured68 ± 5GX/GNO 7 Be exp 22 ± ± 0.20Borexino 8 B exp 4 ± ± 0.08SK + SNO 13 N, 15 O ~0.5 (assumed) - pep1.5 ±.5~0.5 (assumed) - pp only36 ± ± 0.12Gallium (Experiments, SSM and LMA)

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, WHY DID WE STOP? Reasons that existed to continue GNO as long as real-time pp-neutrino detection was (and still is) a long way to go Continous pp-neutrino monitoring is an astrophysical necessity pp-observations simultaneously with Borexino real-time beryllium neutrino observations Further neutrino source experiments to improve the knowledge of relevant cross sections

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Reflections on the causes for the termination of the experiment Quote: „ The Gallium Neutrino Observatory (GNO) is the price that Italy‘s underground lab is paying to get back on its feet after a small chemical spill nearly two years ago“ (Toni Feder, Physics Today, May 2004) No confusion: The spill occured in Hall C (Borexino) GALLEX/GNO (in Hall A) never spilled a single drop of liquid. Ironically, GALLEX introduced the double spill tray safety conception in 1986, almost 20 years before it now became mandatory for the Laboratory The GALLEX corpse feeded Borexino for survival (the laws of nature)

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, The End April 6, 2005 : GNO17, the last regular (semi-annual) GNO meeting was held in Assergi Febr 28, 2006: Final Celebration Ceremony for GALLEX/GNO at Gran Sasso, ending a successful fifteen year period that started with the Inauguration Ceremony on November 30, 1990 (Gallium was sold in April 2007 to Recapture Metals Inc., Ontario, Canada)

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, GALLEX- Inauguration at GRAN SASSO The Future In n… years: Determine pp-neutrino flux directly with low threshold real-time experiments (Xe, Borexino,…?) n = 3,4,5,6…?

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, In memoriam

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Luciano Paoluzi † 2002

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Michael Altmann † 31 July 2006

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Nicola Ferrari † 31 July 2006

Till Kirsten, Max-Planck-Institut für Kernphysik Heidelberg, at TAUP 2007, Sendai September 11–15, Keith Rowley † 29 October 2006