Line Coding Acknowledgments:

Slides:



Advertisements
Similar presentations
Teknik Enkoding Pertemuan 08 Matakuliah: H0484/Jaringan Komputer Tahun: 2007.
Advertisements

1 Data Encoding – Chapter 5 (part 1) CSE 3213 Fall /2/2015 9:13 AM.
Chapter 5 – Signal Encoding and Modulation Techniques
EE 4272Spring, 2003 Chapter 5 Data Encoding Data Transmission Digital data, digital signal Analog data, digital signal: e.g., voice, and video are often.
4.2 Digital Transmission Pulse Modulation (Part 2.1)
CSCD 218 : DATA COMMUNICATIONS AND NETWORKING 1
Networks: Data Encoding1 Data Encoding Techniques.
Data Encoding Techniques
Transmitting digital signals How do we encode digital signals for transmission? How can we interpret those signals?
Signal Encoding Lesson 05 NETS2150/2850
 Information must be transformed into signals before it can be transformed across the communication media  How this information is transformed depends.
331: STUDY DATA COMMUNICATIONS AND NETWORKS.  1. Discuss computer networks (5 hrs)  2. Discuss data communications (15 hrs)
LECTURE 5 CT1303 LAN. DATA ENCODING Digital signal: is a sequence of discrete, discontinuous voltage pulses. Each pulse is a signal element Binary data.
DIGITAL-TO-DIGITAL CONVERSION
Base-Band Digital Data Transmission Prepared By: Amit Degada. Electronics Engineering Department, Sardar Vallabhbhai National Institute of Technology,
COSC 3213 – Computer Networks I Summer 2003 Topics: 1. Line Coding (Digital Data, Digital Signals) 2. Digital Modulation (Digital Data, Analog Signals)
EE 3220: Digital Communication Dr. Hassan Yousif Ahmed Department of Electrical Engineering College of Engineering at Wadi Aldwasser Slman bin Abdulaziz.
Data Communications Chapter 5 Data Encoding.
Department of Electrical and Computer Engineering
Computer Communication & Networks
© Janice Regan, CMPT 128, CMPT 371 Data Communications and Networking Digital Encoding.
Line Coding, Modem, RS232 interfacing sequences.
ECE 4371, Fall, 2015 Introduction to Telecommunication Engineering/Telecommunication Laboratory Zhu Han Department of Electrical and Computer Engineering.
Computer Communication & Networks Lecture # 05 Physical Layer: Signals & Digital Transmission Nadeem Majeed Choudhary
1 Kyung Hee University Digital Transmission. 2 Kyung Hee University 4 장 Digital Transmission 4.1 Line Coding 4.2 Block Coding 4.3 Sampling 4.4 Transmission.
: Data Communication and Computer Networks
British Computer Society (BCS)
Digital Communications
9/12/ Digital Transmisison - Lin 1 CPET/ECET Digital Transmission Data Communications and Networking Fall 2004 Professor Paul I-Hai Lin Electrical.
EEC4113 Data Communication & Multimedia System Chapter 2: Baseband Encoding by Muhazam Mustapha, July 2010.
A digital signal is a sequence of discrete discontinuous voltage pulses. Each pulse is a signal element (symbol). Binary data are transmitted by encoding.
COMMUNICATION SYSTEM EEEB453 Chapter 5 (Part V) DIGITAL TRANSMISSION-LINE ENCODING Intan Shafinaz Mustafa Dept of Electrical Engineering Universiti Tenaga.
ECE 4710: Lecture #12 1 Normalized A =  2 Unipolar NRZ Advantages: 1) Easy to generate for TTL (0, +5V) 2) Single supply voltage 3) Best FNBW Disadvantages:
ECE 4710: Lecture #11 1 Binary vs. Multi-Level Bit Message: t 5 V T s = 1 msec T 0 = 8 T s = 8 msec R = (8/8 ms) = 1 kbps FNBW.
Unit 1 Lecture 6 1. Different Conversion/Transmission Schemes 2 Before we discuss various line coding schemes, let us first have an idea of different.
Prof. Hosny Ibrahim Lecture 5. Data Communication IT 221 By: Prof. Hosny M. Ibrahim 2.
1 Chapter 5 Encoding. 2 Figure 4-1 Transformation of Information to Signals.
Unit 1 Lecture 7 1. Bipolar Encoding Bipolar encoding, like RZ, uses three voltage levels: positive, negative and zero. Unlike RZ, however, the zero level.
Digital Line Encoding Converting standard logic level to a form more suitable to telephone line transmission. Six factors must be considered when selecting.
CSE 320 Data Communications
Presentation on Line coding technique Given by Mithun Majumdar IT/14/40.
Data Communications and Networking
EE 551/451, Fall, 2006 Communication Systems
Data Encoding Data Encoding refers the various techniques of impressing data (0,1) or information on an electrical, electromagnetic or optical signal that.
Chapter 4. Digital Transmission
Computer Communication & Networks
4.2 Digital Transmission Pulse Modulation (Part 2.1)
DIGITAL TRANSMISSION PART C
Data Conversion Methods
Chapter 4 Digital Transmission
Data Encoding Data Encoding refers the various techniques of impressing data (0,1) or information on an electrical, electromagnetic or optical signal that.
Physical Layer – Part 2 Data Encoding Techniques
Lecture 1 Line Encoding 2nd semester
CT1303 LAN Rehab AlFallaj.
Lecture 6: Signal Encoding Techniques
Line Codes and Their Spectra
Line Codes and Their Spectra
NET301 Lecture 5 10/18/2015 Lect5 NET301.
NET301 Lecture 5 10/18/2015 Lect5 NET301.
CCE Computer Networks Chapter 5: Encoding Information must be encoded into signals before it can be transported across communication media Information.
Chapter 4 Digital Transmission
Chapter 5. Data Encoding Digital Data, Digital Signals
Lecture 2: Line Encoding 1nd semester By: Adal ALashban.
DATA COMMUNICATION Lecture-15.
Physical Layer – Part 2 Data Encoding Techniques
Data Transmission And Digital Communication
EEC4113 Data Communication & Multimedia System Chapter 2: Baseband Encoding by Muhazam Mustapha, September 2012.
Chapter 5: Encoding Information must be encoded into signals before it can be transported across communication media Information can be either Digital,
CS433 - Data Communication and Computer Networks
Presentation transcript:

Line Coding Acknowledgments: I would like to thank Wg Cdr (retd) Ramzan for his time and guidance which were very helpful in planning and preparing this lecture. I would also like to thank Dr. Ali Khayam and Mr. Saadat Iqbal for their help and support. Most of the material for this lecture has been taken from “Digital Communications” 2nd Edition by P. M. Grant and Ian A. Glover.

Line Coding Introduction: Binary data can be transmitted using a number of different types of pulses. The choice of a particular pair of pulses to represent the symbols 1 and 0 is called Line Coding and the choice is generally made on the grounds of one or more of the following considerations: Presence or absence of a DC level. Power Spectral Density- particularly its value at 0 Hz. Bandwidth. BER performance (this particular aspect is not covered in this lecture). Transparency (i.e. the property that any arbitrary symbol, or bit, pattern can be transmitted and received). Ease of clock signal recovery for symbol synchronisation. Presence or absence of inherent error detection properties.

Line Coding Introduction: After line coding pulses may be filtered or otherwise shaped to further improve their properties: for example, their spectral efficiency and/ or immunity to intersymbol interference. .

Different Types of Line Coding

Unipolar Signalling Unipolar signalling (also called on-off keying, OOK) is the type of line coding in which one binary symbol (representing a 0 for example) is represented by the absence of a pulse (i.e. a SPACE) and the other binary symbol (denoting a 1) is represented by the presence of a pulse (i.e. a MARK). There are two common variations of unipolar signalling: Non-Return to Zero (NRZ) and Return to Zero (RZ).

Unipolar Signalling Unipolar Non-Return to Zero (NRZ): In unipolar NRZ the duration of the MARK pulse (Ƭ ) is equal to the duration (To) of the symbol slot. 1 0 1 0 1 1 1 1 1 0 V

Unipolar Signalling Unipolar Non-Return to Zero (NRZ): Disadvantages: In unipolar NRZ the duration of the MARK pulse (Ƭ ) is equal to the duration (To) of the symbol slot. (put figure here). Advantages: Simplicity in implementation. Doesn’t require a lot of bandwidth for transmission. Disadvantages: Presence of DC level (indicated by spectral line at 0 Hz). Contains low frequency components. Causes “Signal Droop” (explained later). Does not have any error correction capability. Does not posses any clocking component for ease of synchronisation. Is not Transparent. Long string of zeros causes loss of synchronisation.

Unipolar Non-Return to Zero (NRZ): Unipolar Signalling Unipolar Non-Return to Zero (NRZ): Figure. PSD of Unipolar NRZ

Unipolar Signalling Unipolar Non-Return to Zero (NRZ): When Unipolar NRZ signals are transmitted over links with either transformer or capacitor coupled (AC) repeaters, the DC level is removed converting them into a polar format. The continuous part of the PSD is also non-zero at 0 Hz (i.e. contains low frequency components). This means that AC coupling will result in distortion of the transmitted pulse shapes. AC coupled transmission lines typically behave like high-pass RC filters and the distortion takes the form of an exponential decay of the signal amplitude after each transition. This effect is referred to as “Signal Droop” and is illustrated in figure below.

Unipolar Signalling 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 V -V/2 V/2 1 0 1 0 1 1 1 1 1 0 V -V/2 V/2 1 0 1 0 1 1 1 1 1 0 V -V/2 V/2 V/2 -V/2 Figure Distortion (Signal Droop) due to AC coupling of unipolar NRZ signal

Unipolar Signalling Return to Zero (RZ): 1 0 1 0 1 1 1 0 0 0 V In unipolar RZ the duration of the MARK pulse (Ƭ ) is less than the duration (To) of the symbol slot. Typically RZ pulses fill only the first half of the time slot, returning to zero for the second half. 1 0 1 0 1 1 1 0 0 0 To V Ƭ

Unipolar Signalling Return to Zero (RZ): 1 0 1 0 1 1 1 0 0 0 V In unipolar RZ the duration of the MARK pulse (Ƭ ) is less than the duration (To) of the symbol slot. Typically RZ pulses fill only the first half of the time slot, returning to zero for the second half. 1 0 1 0 1 1 1 0 0 0 To V Ƭ

Unipolar Signalling Unipolar Return to Zero (RZ): Disadvantages: Simplicity in implementation. Presence of a spectral line at symbol rate which can be used as symbol timing clock signal. Disadvantages: Presence of DC level (indicated by spectral line at 0 Hz). Continuous part is non-zero at 0 Hz. Causes “Signal Droop”. Does not have any error correction capability. Occupies twice as much bandwidth as Unipolar NRZ. Is not Transparent

Unipolar Return to Zero (RZ): Unipolar Signalling Unipolar Return to Zero (RZ): Figure. PSD of Unipolar RZ

Unipolar Signalling In conclusion it can be said that neither variety of unipolar signals is suitable for transmission over AC coupled lines.

Polar Signalling In polar signalling a binary 1 is represented by a pulse g1(t) and a binary 0 by the opposite (or antipodal) pulse g0(t) = -g1(t). Polar signalling also has NRZ and RZ forms. 1 0 1 0 1 1 1 1 1 0 +V -V Figure. Polar NRZ

Polar Signalling In polar signalling a binary 1 is represented by a pulse g1(t) and a binary 0 by the opposite (or antipodal) pulse g0(t) = -g1(t). Polar signalling also has NRZ and RZ forms. 1 0 1 0 1 1 1 0 0 0 +V -V Figure. Polar RZ

Polar Signalling PSD of Polar Signalling: Polar NRZ and RZ have almost identical spectra to the Unipolar NRZ and RZ. However, due to the opposite polarity of the 1 and 0 symbols, neither contain any spectral lines. Figure. PSD of Polar NRZ

Polar Signalling PSD of Polar Signalling: Polar NRZ and RZ have almost identical spectra to the Unipolar NRZ and RZ. However, due to the opposite polarity of the 1 and 0 symbols, neither contain any spectral lines. Figure. PSD of Polar RZ

Polar Signalling Polar Non-Return to Zero (NRZ): Advantages: Simplicity in implementation. No DC component. Disadvantages: Continuous part is non-zero at 0 Hz. Causes “Signal Droop”. Does not have any error correction capability. Does not posses any clocking component for ease of synchronisation. Is not transparent.

Polar Signalling Polar Return to Zero (RZ): Advantages: Simplicity in implementation. No DC component. Disadvantages: Continuous part is non-zero at 0 Hz. Causes “Signal Droop”. Does not have any error correction capability. Does not posses any clocking component for easy synchronisation. However, clock can be extracted by rectifying the received signal. Occupies twice as much bandwidth as Polar NRZ.

BiPolar Signalling Bipolar Signalling is also called “alternate mark inversion” (AMI) uses three voltage levels (+V, 0, -V) to represent two binary symbols. Zeros, as in unipolar, are represented by the absence of a pulse and ones (or marks) are represented by alternating voltage levels of +V and –V. Alternating the mark level voltage ensures that the bipolar spectrum has a null at DC And that signal droop on AC coupled lines is avoided. The alternating mark voltage also gives bipolar signalling a single error detection capability. Like the Unipolar and Polar cases, Bipolar also has NRZ and RZ variations.

BiPolar Signalling 1 0 1 0 1 1 1 1 1 0 +V -V Figure. BiPolar NRZ

Polar Signalling PSD of BiPolar/ AMI NRZ Signalling: Figure. PSD of BiPolar NRZ

BiPolar Signalling BiPolar / AMI NRZ: Advantages: No DC component. Occupies less bandwidth than unipolar and polar NRZ schemes. Does not suffer from signal droop (suitable for transmission over AC coupled lines). Possesses single error detection capability. Disadvantages: Does not posses any clocking component for ease of synchronisation. Is not Transparent.

BiPolar Signalling 1 0 1 0 1 1 1 1 1 0 +V -V Figure. BiPolar RZ

Polar Signalling PSD of BiPolar/ AMI RZ Signalling: Figure. PSD of BiPolar RZ

BiPolar Signalling BiPolar / AMI RZ: Advantages: No DC component. Occupies less bandwidth than unipolar and polar RZ schemes. Does not suffer from signal droop (suitable for transmission over AC coupled lines). Possesses single error detection capability. Clock can be extracted by rectifying (a copy of) the received signal. Disadvantages: Is not Transparent.

HDBn Signalling HDBn is an enhancement of Bipolar Signalling. It overcomes the transparency problem encountered in Bipolar signalling. In HDBn systems when the number of continuous zeros exceeds n they are replaced by a special code. The code recommended by the ITU-T for European PCM systems is HDB-3 (i.e. n=3). In HDB-3 a string of 4 consecutive zeros are replaced by either 000V or B00V. Where, ‘B’ conforms to the Alternate Mark Inversion Rule. ‘V’ is a violation of the Alternate Mark Inversion Rule

HDBn Signalling The reason for two different substitutions is to make consecutive Violation pulses alternate in polarity to avoid introduction of a DC component. The substitution is chosen according to the following rules: If the number of nonzero pulses after the last substitution is odd, the substitution pattern will be 000V. If the number of nonzero pulses after the last substitution is even, the substitution pattern will be B00V.

HDBn Signalling 1 0 1 0 0 0 0 1 0 0 0 0 B 0 0 V 0 0 0 V

HDBn Signalling PSD of HDB3 (RZ) Signalling: The PSD of HDB3 (RZ) is similar to the PSD of Bipolar RZ. Figure. PSD of HDB3 RZ

HDBn Signalling HDBn RZ: Advantages: No DC component. Occupies less bandwidth than unipolar and polar RZ schemes. Does not suffer from signal droop (suitable for transmission over AC coupled lines). Possesses single error detection capability. Clock can be extracted by rectifying (a copy of) the received signal. Is Transparent. These characteristic make this scheme ideal for use in Wide Area Networks

Manchester Signalling In Manchester encoding , the duration of the bit is divided into two halves. The voltage remains at one level during the first half and moves to the other level during the second half. A ‘One’ is +ve in 1st half and -ve in 2nd half. A ‘Zero’ is -ve in 1st half and +ve in 2nd half. Note: Some books use different conventions.

Manchester Signalling 1 0 1 0 1 1 1 1 1 0 +V Note: There is always a transition at the centre of bit duration. -V Figure. Manchester Encoding.

Manchester Signalling PSD of Manchester Signalling: Figure. PSD of Manchester

Manchester Signalling The transition at the centre of every bit interval is used for synchronization at the receiver. Manchester encoding is called self-synchronizing. Synchronization at the receiving end can be achieved by locking on to the the transitions, which indicate the middle of the bits. It is worth highlighting that the traditional synchronization technique used for unipolar, polar and bipolar schemes, which employs a narrow BPF to extract the clock signal cannot be used for synchronization in Manchester encoding. This is because the PSD of Manchester encoding does not include a spectral line/ impulse at symbol rate (1/To). Even rectification does not help.

Manchester Signalling Advantages: No DC component. Does not suffer from signal droop (suitable for transmission over AC coupled lines). Easy to synchronise with. Is Transparent. Disadvantages: Because of the greater number of transitions it occupies a significantly large bandwidth. Does not have error detection capability. These characteristic make this scheme unsuitable for use in Wide Area Networks. However, it is widely used in Local Area Networks such as Ethernet and Token Ring.

Reference Text Books “Digital Communications” 2nd Edition by Ian A. Glover and Peter M. Grant. “Modern Digital & Analog Communications” 3rd Edition by B. P. Lathi. “Digital & Analog Communication Systems” 6th Edition by Leon W. Couch, II. “Communication Systems” 4th Edition by Simon Haykin. “Analog & Digital Communication Systems” by Martin S. Roden. “Data Communication & Networking” 4th Edition by Behrouz A. Forouzan. 39