N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, II Fall Term 2004.

Slides:



Advertisements
Similar presentations
Bill Spence* Oxford April 2007
Advertisements

What do we know about the Standard Model? Sally Dawson Lecture 4 TASI, 2006.
Instantons in Deformed Supersymmetric Gauge Theories Shin Sasaki (University of Helsinki) Based on the work [hep-th/ JHEP 07 (2007) 068 ] [hep-th/ ,
Construction of BPS Solitons via Tachyon Condensation So RIKEN based on the work with T. Asakawa and K. Ohta hep-th/0603***
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.
1 Top Production Processes at Hadron Colliders By Paul Mellor.
Lattice Spinor Gravity Lattice Spinor Gravity. Quantum gravity Quantum field theory Quantum field theory Functional integral formulation Functional integral.
Introduction to On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay Orsay Summer School, Correlations.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen; & with Krzysztof Kajda & Janusz Gluza.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture IV.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture II.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture V.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture III.
Structure of Amplitudes in Gravity I Lagrangian Formulation of Gravity, Tree amplitudes, Helicity Formalism, Amplitudes in Twistor Space, New techniques.
Chiral freedom and the scale of weak interactions.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture I.
Structure of Amplitudes in Gravity II Unitarity cuts, Loops, Inherited properties from Trees, Symmetries Playing with Gravity - 24 th Nordic Meeting Gronningen.
Recurrence, Unitarity and Twistors including work with I. Bena, Z. Bern, V. Del Duca, D. Dunbar, L. Dixon, D. Forde, P. Mastrolia, R. Roiban.
Field Theory: The Past 25 Years Nathan Seiberg (IAS) The Future of Physics October, 2004 A celebration of 25 Years of.
Beyond Feynman Diagrams Lecture 2 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
Queen Mary, University of London Nov. 9, 2011 Congkao Wen.
The World Particle content. Interactions Schrodinger Wave Equation He started with the energy-momentum relation for a particle he made the quantum.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture III.
Constraints on renormalization group flows Based on published and unpublished work with A.Dymarsky,Z.Komargodski,S.Theisen.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, III Fall Term 2004.
Twistors and Perturbative QCD Yosuke Imamura The Univ. of Tokyo String Theory and Quantum Field Theory Aug.19-23, 2005 at YITP tree-level Yang-Mills 1.
Twistor Inspired techniques in Perturbative Gauge Theories including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
Recursive Approaches to QCD Matrix Elements including work with Z. Bern, S Bidder, E Bjerrum-Bohr, L. Dixon, H Ita, D Kosower W Perkins K. Risager RADCOR.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture II.
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Twistors and Gauge Theory DESY Theory Workshop September 30 September 30, 2005.
Maksimenko N.V., Vakulina E.V., Deryuzkova О.М. Kuchin S.М. GSU, GOMEL The Amplitude of the Сompton Scattering of the Low-Energy Photons at Quark-Antiquark.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Unitarity and Amplitudes at Maximal Supersymmetry David A. Kosower with Z. Bern, J.J. Carrasco, M. Czakon, L. Dixon, D. Dunbar, H. Johansson, R. Roiban,
Toward the Determination of Effective Action in Superstring Theory and M-Theory Yoshifumi Hyakutake (Osaka Univ.)
The Geometry of Moduli Space and Trace Anomalies. A.Schwimmer (with J.Gomis,P-S.Nazgoul,Z.Komargodski, N.Seiberg,S.Theisen)
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture I.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
One particle states: Wave Packets States. Heisenberg Picture.
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
From Twistors to Calculations. 2 Precision Perturbative QCD Predictions of signals, signals+jets Predictions of backgrounds Measurement of luminosity.
Loop Calculations of Amplitudes with Many Legs DESY DESY 2007 David Dunbar, Swansea University, Wales, UK.
From Twistors to Gauge-Theory Amplitudes WHEPP, Bhubaneswar, India January 7 January 7, 2006.
Mathematical Tools of Quantum Mechanics
Maximal super Yang-Mills theories on curved background with off-shell supercharges 総合研究大学院大学 藤塚 理史 共同研究者: 吉田 豊 氏 (KEK), 本多 正純 氏 ( 総研大 /KEK) based on M.
Twistor Inspired techniques in Perturbative Gauge Theories-II including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
The inclusion of fermions – J=1/2 particles
Two-dimensional SYM theory with fundamental mass and Chern-Simons terms * Uwe Trittmann Otterbein College OSAPS Spring Meeting at ONU, Ada April 25, 2009.
9/10/2007Isaac Newton Institute1 Relations among Supersymmetric Lattice Gauge Theories So Niels Bohr Institute based on the works arXiv:
The Importance of the TeV Scale Sally Dawson Lecture 3 FNAL LHC Workshop, 2006.
Marginally Deformed Gauge Theories from Twistor String Theory Jun-Bao Wu (SISSA) based on work with Peng Gao hep-th/ v3 KITPC Beijing, October 18,
Lecture 2 - Feynman Diagrams & Experimental Measurements
On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay LHC PhenoNet Summer School Cracow, Poland September.
2006 5/19QCD radiative corrections1 QCD radiative corrections to the leptonic decay of J/ψ Yu, Chaehyun (Korea University)
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay LHC PhenoNet Summer School Cracow, Poland September.
Lecture 4 – Quantum Electrodynamics (QED)
Song He Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing.
Intro to SUSY II: SUSY QFT Archil Kobakhidze PRE-SUSY 2016 SCHOOL 27 JUNE -1 JULY 2016, MELBOURNE.
Trees in N=8 SUGRA and Loops in N=4 SYM
Complete QCD Amplitudes: Part II of QCD On-Shell Recursion Relations
Modern Methods for Loop Calculations of Amplitudes with Many Legs
Announcements Exam Details: Today: Problems 6.6, 6.7

It means anything not quadratic in fields and derivatives.
Presentation transcript:

N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, II Fall Term 2004

2 Course Overview Present advanced techniques for calculating amplitudes in gauge theories Motivation for hard calculations Review gauge theories and supersymmetry Color decomposition; spinor-helicity basis; recurrence relations; supersymmetry Ward identities; factorization properties of gauge-theory amplitudes Twistor space; Cachazo-Svrcek-Witten rules for amplitudes Unitarity-based method for loop calculations; loop integral reductions Computation of anomalous dimensions

3 Why Calculate Amplitudes? There are strong physics motivations: LHC physics There are strong mathematical physics motivations: study of AdS/CFT duality

4 Color Decomposition Standard Feynman rules  function of momenta, polarization vectors , and color indices Re-organize color structure, and strip off color factors

5 Color-Ordered Feynman Rules

6 Spinor Helicity Spinor wavefunctions Introduce spinor products Explicit representation where

7 We then obtain the explicit formulæ otherwise so that the identity always holds

8 Properties of the Spinor Product Antisymmetry Gordon identity Charge conjugation Fierz identity Projector representation Schouten identity

9 Spinor-Helicity Representation for Gluons Gauge bosons also have only ± physical polarizations Elegant — and covariant — generalization of circular polarization Xu, Zhang, Chang (1984) reference momentum q Transverse Normalized

10 Properties of the Spinor-Helicity Basis Physical-state projector Simplifications

11 Examples By explicit calculation (or other arguments), every term in the gluon tree-level amplitude has at least one factor of Look at four-point amplitude Recall three-point color-ordered vertex

12 Calculate choose identical reference momenta for all legs  all vanish  amplitude vanishes Calculate choose reference momenta 4,1,1,1  all vanish  amplitude vanishes Calculate choose reference momenta 3,3,2,2  only nonvanishing is  only s 12 channel contributes

13

14 No diagrammatic calculation required for the last helicity amplitude, Obtain it from the decoupling identity

15 Recurrence Relations Considered color-ordered amplitude with one leg off-shell, amputate its polarization vector This is the Berends–Giele current Given by the sum of all ( n +1)-point color-ordered diagrams with legs 1… n on shell Follow the off-shell line into the sum of diagrams. It is attached to either a three- or four-point vertex. Other lines attaching to that vertex are also sums of diagrams with one leg off-shell and other on shell, that is currents

16 Recurrence Relations Berends & Giele (1988); DAK (1989)  Polynomial complexity per helicity

17

18 Properties of the Current Decoupling identity Reflection identity Conservation

19 Explicit Solutions Strategy: solve by induction Compute explicitly shorthand Compute five-point explicitly  ansatz

20

21 Observe that Explicit sum Implicit sum

22 Exchange order of sums and use the “eikonal” identity

23

24 Contract with polarization vector for last leg, amputate, and take on-shell limit Parke-Taylor equations Proven using the Berends–Giele recurrence relations Maximally helicity-violating or ‘MHV’

25 Gauge-theory amplitude  Color-ordered amplitude: function of k i and  i  Helicity amplitude: function of spinor products and helicities ±1 Spinor products  spinors Color decomposition & stripping Spinor-helicity basis

26 Spinor Variables From Lorentz vectors to bi-spinors 2×2 complex matrices with det = 1

27 Null momenta can write it as a bispinor phase ambiguity in (same as seen in spinor products) For real Minkowski p, take Invariant tensor gives spinor products

28 Connection to earlier spinor products and spinor-helicity basis  Amplitudes as functions of spinor variables and helicities ±1

29 Scaling of Amplitudes Suppose we scale the spinors then by explicit computation we see that the MHV amplitude and that more generally also called ‘phase weight’

30 For the non-trivial parts of the amplitude, we might as well use uniformly rescaled spinors  CP 1 ‘complex projective space’ Start with C 2, and rescale all vectors by a common scale the spinors are then ‘homogeneous’ coordinates on CP 1 If we look at each factor in the MHV amplitude, we see that it is just a free-field correlator (Green function) on CP 1 This is the essence of Nair’s construction of MHV amplitudes as correlation functions on the ‘line’ = CP 1

31 Let’s Travel to Twistor Space! It turns out that the natural setting for amplitudes is not exactly spinor space, but something similar. The motivation comes from studying the representation of the conformal algebra. Half-Fourier transform of spinors: transform, leave alone  Penrose’s original twistor space, real or complex Study amplitudes of definite helicity: introduce homogeneous coordinates  CP 3 or RP 3 (projective) twistor space Back to momentum space by Fourier-transforming 

32 MHV Amplitudes in Twistor Space Write out the half-Fourier transform including the energy- momentum conserving  function

33 Result equation for a line MHV amplitudes live on lines in twistor space Value of the twistor-space amplitude is given by a correlation function on the line

34 Analyzing Amplitudes in Twistor Space Amplitudes in twistor space turn out to be hard to compute directly. Even with computations in momentum space, the Fourier transforms are hard to compute explicitly. We need other tools to analyze the amplitudes. Simple ‘algebraic’ properties in twistor space — support on CP 1 s or CP 2 s — become differential properties in momentum space. Construct differential operators.

35 Equation for a line ( CP 1 ): gives us a differential (‘line’) operator in terms of momentum- space spinors Equation for a plane ( CP 2 ): also gives us a differential (‘plane’) operator

36 Properties Thus for example

37 Beyond MHV Witten’s proposal: Each external particle represented by a point in twistor space Amplitudes non-vanishing only when points lie on a curve of degree d and genus g, where d = # negative helicities – 1 + # loops g  # loops; g = 0 for tree amplitudes Integrand on curve supplied by a topological string theory Obtain amplitudes by integrating over all possible curves  moduli space of curves Can be interpreted as D 1 -instantons hep-ph/

38 Strings in Twistor Space String theory can be defined by a two-dimensional field theory whose fields take values in target space: –n-dimensional flat space –5-dimensional Anti-de Sitter × 5-sphere –twistor space: intrinsically four-dimensional  Topological String Theory Spectrum in Twistor space is N = 4 supersymmetric multiplet (gluon, four fermions, six real scalars) Gluons and fermions each have two helicity states

39 A New Duality String TheoryGauge Theory Topological B-model on CP 3|4 N =4 SUSY ‘Twistor space’ Witten (2003); Berkovits & Motl; Neitzke & Vafa; Siegel (2004) weak–weak