Observation of the photocentre position variations with CoRoT - Scientific motivations and expected performance C. Moutou (LAM) – H. Deeg (IAC) – M. Ollivier.

Slides:



Advertisements
Similar presentations
SNAP vs. Ground-based Supernova Missions Alex Kim For the SNAP collaboration Lawrence Berkeley National Laboratory January 2003.
Advertisements

False positives in the Corot transiting planet search Goal: estimate the amount of ground-based observations necessary for the Corot ground-based follow-up.
A NEW CTE PHOTOMETRIC CORRECTION FORMULA FOR ACS Marco Chiaberge TIPS meeting 05/16/2012.
25th CoRoT Scientific Council : sept M.O. - L.J. Evaluation of exo N1 data M.Ollivier - L Jorda.
P. Bordé 1, B. Samuel 1, A. Léger 1, M. Ollivier 1 & D. Rouan 2 1 IAS, Université Paris-Sud 11 2 LESIA, Observatoire de Paris First International Corot.
Radial Velocity follow-up of SWASP-North candidates with SOPHIE (1.93-m OHP) G. Hébrard & F. Bouchy (IAP/OHP)
Detection and Photometric Monitoring of QSOs and AGN with COROT J. Surdej, J.Poels, J.-F. Claeskens, E. Gosset Institut d’Astrophysique et de Géophysique,
Transits from Space: 1. The CoRoT mission. Why do Transit searches from Space? 1.No scintillation noise → One can reach the photon limit 2. No atmospheric.
1 M. Auvergne. Natal October 2004 Instrument performances. Signal perturbations: Radiations. Scattered light. ACS. Temperature. Readout electronic. Calibrations.
Time Series Photometry; Some Musings Steve B. Howell, NASA Ames Research Center.
Photometric follow-up of transiting planet candidates Marton Hidas UNSW.
Oversampling mode Roi Alonso, Pierre-Yves Chabaud Christian Surace, Raphael Cautain, P. Barge.
A New Block Based Motion Estimation with True Region Motion Field Jozef Huska & Peter Kulla EUROCON 2007 The International Conference on “Computer as a.
CoRoT Data and Transit Detection* 5/19/09Peter Plavchan, AY 218 Peter Plavchan On behalf of NStED and NExScI team * Proper credits to the proper people.
Thanks to Henrietta Swan Leavitt, Harvard CfA November 5th Hommage to Henrietta Leavitt from the CoRoT Team Annie BAGLIN, Merième CHADID,
KBO Workshop, DPS Stellar occultations are diffracting phenomena - A powerful tool to accede to invisible small KBO - First results of the Pic du.
NGAO Photometric Accuracy Budget Strategy Richard Dekany.
Exploitation of Corot images Leonardo Pinheiro 3/Nov/05, Ubatuba.
SDW20051 Vincent Lapeyrère LESIA – Observatoire de Paris Calibration of flight model CCDs for CoRoT mission.
1Annie Baglin, Natal, October 30th 2004 The origin of the mission The scientific requirements The global programme The focal plane and the targets The.
Optimized photometric aperture for the seismology channel Fabio de Oliveira Fialho Michel Auvergne 2nd CoRoT-Brazil Workshop.
PLAnetary Transits and Oscillations of stars Thierry Appourchaux for the PLATO Consortium
STScI May Symposium Baltimore Frédéric Pont (Geneva) Francois Bouchy (Marseille), Claudio Melo (ESO), Nuno Santos (Lisbon), Didier Queloz, Stephane.
Properties of binary systems found in the CoRoT exoplanet search J.M. Almenara, H. Deeg, CoRoT Detection WG, CoRoT Ground-Based Follow-Up WG, Planets in.
Characterisation of stellar granulation and stellar activity (observational requirements, feasability, expectations) F. Baudin 1, R. Samadi 2, M-J Goupil.
Adriana V. R. Silva CRAAM/Mackenzie COROT /11/2005.
The Blind Test in colors C. Moutou, R. Cautain, D. Blouin, A. Lanza, S. Aigrain, H. Deeg, …
Data processing group. General study of data processing architecture: - overall definition of the data processing functions - share of tasks between on-board.
Number of eclipsing binaries vs. transiting planets: preparation of follow-up observations Tristan Guillot (OCA), Frédéric Pont, Maxime Marmier, Didier.
HD This star is found periodic. The possible period is days. We present the phase curve with this period. HD This star is not variable.
Gili Werner. Motivation Detecting text in a natural scene is an important part of many Computer Vision tasks.
Photometric detection of the starlight reflection by a “Pegasi” planet Martin Vannier (1), Tristan Guillot (2), Suzanne Aigrain (1) (1) ESO, Chile (2)
Transit Searches: Technique. The “Transit” Method Viewing angle ~ orbital plane! Delta L / L ~ ( R planet / R star ) 2 Jupiter: ~ 1-2 % Earth: ~
 PLATO PLAnetary Transits & Oscillations of stars Data onboard treatment PPLC study February 2009 on behalf of Reza Samadi for the PLATO data treatment.
1 High-order coronagraphic phase diversity: demonstration of COFFEE on SPHERE. B.Paul 1,2, J-F Sauvage 1, L. Mugnier 1, K. Dohlen 2, D. Mouillet 3, T.
1 Leonardo Pinheiro da Silva Corot-Brazil Workshop – October 31, 2004 Corot Instrument Characterization based on in-flight collected data Leonardo Pinheiro.
Exoplanets Complementary Observations Working Group Report …
Corot Week 9 ESTEC 5-9 Dec 2005 Frédéric Pont Geneva Observatory Lessons from the OGLE planetary transit survey Francois Bouchy (Marseille/OHP), Nuno Santos.
A STEP Expected Yield of Planets … Survey strategy The CoRoTlux Code Understanding transit survey results Fressin, Guillot, Morello, Pont.
Exoplanet Science Don Pollacco QUB. Overview PLATO’s objectives and space Work packages in the definition phase Timescales and aims of the definition.
The experience of BEST Heike Rauer and the BEST Team Institut für Planetenforschung Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) and Zentrum für.
Initial Results from the Chandra Shallow X-ray Survey in the NDWFS in Boötes S. Murray, C. Jones, W. Forman, A. Kenter, A. Vikhlinin, P. Green, D. Fabricant,
ACS/WFC CTE correction for point source photometry Marco Chiaberge ACS Team STScI.
Figure ground segregation in video via averaging and color distribution Introduction to Computational and Biological Vision 2013 Dror Zenati.
SNAP Calibration Program Steps to Spectrophotometric Calibration The SNAP (Supernova / Acceleration Probe) mission’s primary science.
Extrasolar Planets & The Power of the Dark Side David Charbonneau California Institute of Technology Fermilab – 24 April 2002.
TIPS - Oct 13, 2005 M. Sirianni Temperature change for ACS CCDs: initial study on scientific performance M. Sirianni, T. Wheeler, C.Cox, M. Mutchler, A.
JWST Time-Series Pipeline Nikole K. Lewis STScI. Data Pipeline for Transiting Exoplanets The foundation for the Spitzer and Hubble data pipelines were.
X-ray and observational Astronomy Detection limits for close eclipsing and transiting sub- stellar and planetary companions to white dwarfs in the WASP.
CoRoT Week 10, Nice - 06/06/2006 OverSampling Mode C. Quentin, R. Cautain, C. Surace, R. Savalle, J-C. Meunier P.Barge, R. Alonso, M. Deleuil, C. Moutou.
Corot:Ubatuba Nov The Ground Segment: Data Processing. Software development in laboratories. Brazilian contribution. Michel Auvergne Réza Samadi.
NIRISS NRM bad pixel tolerance analysis David Lafrenière 2012 February 21.
PLAnetary Transits and Oscillations of stars Claude CATALA Observatoire de Paris, LESIA Main Science Requirements.
Thomas Hackman: Stellar differential rotation1 Detecting stellar differential rotation NORDITA – Solar and stellar dynamo cycles Thomas Hackman,
K2 - 19, THE FIRST K2 MULTI-PLANETARY SYSTEM SHOWING TTVS Susana C.C. Barros Instituto de Astrofísica e Ciências do Espaço, Porto, Portugal Collaborators:
GIRAFFE (VLT): A new tool for exoplanets preparatory observations and follow-up Benoît Loeillet (LAM), François Bouchy, Magali Deleuil, Claire Moutou,
1 Analysis of Small RPC DHCAL Prototype Data (noise and cosmic ray) LCWA09, Albuquerque, New Mexico Friday, October 02, 2009 Qingmin Zhang HEP Division,
Evaluation of the Corot candidate fields including secondary candidates for long runs E. Michel COROT field evaluation mai 04, IAS E. Michel COROT field.
The Doppler follow-up of COROT transit candidates F. Bouchy Laboratoire d’Astrophysique de Marseille Corot Week 8 – 23/27 May 2005.
Measurement of the photocentre position variations with CoRoT - further investigations M. Ollivier (IAS)
NIRSpec Time Series Observations
Searching for transiting Extra-Solar planets “Pre-OmegaTranS”
Validation of N1 Light Curves
Strategy of radial velocity follow-up
Fabio de Oliveira Fialho Michel Auvergne
N0--> N1 Chain Includes corrections of all the known instrumental perturbators - electronics: offset, EMI, gain - Time integration - Sky background -
Basics of Photometry.
Some preliminary results from the exochannel
CoRoTLux ongoing activity
The University of Tokyo Norio Narita
Presentation transcript:

Observation of the photocentre position variations with CoRoT - Scientific motivations and expected performance C. Moutou (LAM) – H. Deeg (IAC) – M. Ollivier (IAS) M. Auvergne (LESIA) – R. Diaz (LAM) – F. Bouchy (IAP) - P. Bordé (IAS)

Why measuring the photocentre position ? 2 CoRoT SC – 18 april 2012

Why measuring the photocentre position ? 3 CoRoT SC – 18 april 2012 Fastidious photometric and spectroscopic follow-up

CoRoT SC – 18 april 2012 Photocentre variations ? What to do ? What is the amplitude of the phenomenon ? Are we able to detect it ? x y + + 4

Accuracy of the photocentre position determination First approach : simulation “ Best case” : –photon noise limited observation + no other noise sources –Measurement of photocentre position on a 32 s sampled LC –Rms over 256 points (136 min) CoRoT SC – 18 april

Accuracy of the photocentre position determination Second approach : “realistic case” : Estimation of the photocenter position using the imagettes –Determination of the optimal mask for the exo target –Estimation of the photocentre position using the pixel within the mask as it is done for the sismo stars (white light) –Determination of the residual jitter thanks to the sismo stars –Correction of the jitter in the photocentre curve for the exo target –Estimation of the photocentre stability (rms of the photocentre position curve) –“clever” filtering : gain by a factor of 2 in the rms value ? Work done for 2 targets –Star R=15.07 –Star R=13.68 CoRoT SC – 18 april

Accuracy of the photocentre position determination Star R=13.68 : rms=0.015 px -> px CoRoT SC – 18 april

Accuracy of the photocentre position determination –Star R=15.07 rms = px -> px CoRoT SC – 18 april

Photocentre position averaging If we average over the transit duration + several transits: If à 80 day run 9 CoRoT SC – 18 april 2012 Orbital period (d) Transit duration (min) Gain Accuracy (px)10-41,2 x ,6 x ,5 x 10 -4

Amplitude of the photocentre position variations First approach : simulation “Best case” : –Photon noise limited observation + no other noise sources –Optimized photometric mask –1 contaminant (BBS) star at a varying distance –Several values of the extinction rate –Mean value of the photocentre over 136 min (256 frames every 32 s) –Determination of the rms with a 32 s sampling –Determination of the photocentre variation w/o eclipse of the BBS. CoRoT SC – 18 april

Amplitude of the photocentre position variations (ΔmV=3) CoRoT SC – 18 april ΔF/F 0.6 % 2 % 3 %

Amplitude of the photocentre position variations (ΔmV=5) CoRoT SC – 18 april

Amplitude of the photocentre position variations Second approach : analytic calculation Δ phot : photocentre position variation (pix) frac cont : fraction of the contaminant flux on the total flux in the aperture F t, F c : target and contaminant flux k : fraction of the contaminant flux in the target aperture Δ CEB : relative depth of the CEB eclipse d t  c : distance target contaminant in arcsec CoRoT SC – 18 april

Amplitude of the photocentre position variations Second approach : analytic calculation (k≈1) CoRoT SC – 18 april 2012 d tar-BBS = 5 arcsec d tar-BBS = 1 arcsec 14

Amplitude of the photocentre position variations Case of 21observed CEBs CoRoT SC – 18 april

Other effect : simulation tool 16 CoRoT SC – 18 april 2012

Other effect (1) : chromatic stellar flux variation Analysis algorithms comparable to stellar flux to disentangle from stellar activity 17 CoRoT SC – 18 april 2012

Other effect (2) : main target eclipse in a crowed field Main target : mV=11 2 contaminants : 5 arcsec in x and y 18 CoRoT SC – 18 april 2012

Other effect (3) : effect of hot pixels 4 saturated pixels at extreme x positions Δx = 3 px 19 CoRoT SC – 18 april 2012

Photocentre and follow-up 20 CoRoT SC – 18 april 2012

Photocentre and follow-up 21 CoRoT SC – 18 april 2012 Expected from runs –1000 new candidates –200 planet-like candidates (no secondary eclipse detected, shallow transit depth) –45% of them are CEBs = 90 –60% of CEB lead to measurable photocentre drift

Conclusion The photocentre position determination is useful for CEB identification The accuracy appears to be sufficient at least for mR < Other effects can be identified The implementation strategy has to be discussed: –Modification of on-board SW to compute the photocentre position of oversampled stars –Ground base a posteriori evaluation using the imagette after re-allocation of the imagettes CoRoT SC – 18 april

CoRoT SC – 18 april 2012 Discussion 23