Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.

Slides:



Advertisements
Similar presentations
電腦視覺 Computer and Robot Vision I
Advertisements

Image Segmentation Image segmentation (segmentace obrazu) –division or separation of the image into segments (connected regions) of similar properties.
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
Segmentation (2): edge detection
1Ellen L. Walker Edges Humans easily understand “line drawings” as pictures.
On Constrained Optimization Approach To Object Segmentation Chia Han, Xun Wang, Feng Gao, Zhigang Peng, Xiaokun Li, Lei He, William Wee Artificial Intelligence.
Thresholding Otsu’s Thresholding Method Threshold Detection Methods Optimal Thresholding Multi-Spectral Thresholding 6.2. Edge-based.
CS 376b Introduction to Computer Vision 04 / 11 / 2008 Instructor: Michael Eckmann.
CS 376b Introduction to Computer Vision 04 / 14 / 2008 Instructor: Michael Eckmann.
1 Lines and Arcs Segmentation In some image sets, lines, curves, and circular arcs are more useful than regions or helpful in addition to regions. Lines.
כמה מהתעשייה? מבנה הקורס השתנה Computer vision.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean Hall 5409 T-R 10:30am – 11:50am.
October 8, 2013Computer Vision Lecture 11: The Hough Transform 1 Fitting Curve Models to Edges Most contours can be well described by combining several.
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
Chapter 10: Image Segmentation
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
06 - Boundary Models Overview Edge Tracking Active Contours Conclusion.
Machine Vision for Robots
October 14, 2014Computer Vision Lecture 11: Image Segmentation I 1Contours How should we represent contours? A good contour representation should meet.
Digital Image Processing Lecture 20: Representation & Description
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
7.1. Mean Shift Segmentation Idea of mean shift:
Edge Linking & Boundary Detection
Segmentation Course web page: vision.cis.udel.edu/~cv May 7, 2003  Lecture 31.
From Pixels to Features: Review of Part 1 COMP 4900C Winter 2008.
Intelligent Vision Systems ENT 496 Object Shape Identification and Representation Hema C.R. Lecture 7.
Digital Image Processing CCS331 Relationships of Pixel 1.
Joonas Vanninen Antonio Palomino Alarcos.  One of the objectives of biomedical image analysis  The characteristics of the regions are examined later.
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
Chapter 10 Image Segmentation.
Chapter 10, Part II Edge Linking and Boundary Detection The methods discussed in the previous section yield pixels lying only on edges. This section.
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
CS654: Digital Image Analysis Lecture 25: Hough Transform Slide credits: Guillermo Sapiro, Mubarak Shah, Derek Hoiem.
Computer and Robot Vision II Chapter 20 Accuracy Presented by: 傅楸善 & 王林農 指導教授 : 傅楸善 博士.
Course 8 Contours. Def: edge list ---- ordered set of edge point or fragments. Def: contour ---- an edge list or expression that is used to represent.
October 16, 2014Computer Vision Lecture 12: Image Segmentation II 1 Hough Transform The Hough transform is a very general technique for feature detection.
Image Segmentation Image segmentation (segmentace obrazu)
Edges and Lines Readings: Chapter 10:
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
1 Overview representing region in 2 ways in terms of its external characteristics (its boundary)  focus on shape characteristics in terms of its internal.
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
Course 3 Binary Image Binary Images have only two gray levels: “1” and “0”, i.e., black / white. —— save memory —— fast processing —— many features of.
Unsupervised Classification
Sheng-Fang Huang Chapter 11 part I.  After the image is segmented into regions, how to represent and describe these regions? ◦ In terms of its external.
Computer Graphics CC416 Lecture 04: Bresenham Line Algorithm & Mid-point circle algorithm Dr. Manal Helal – Fall 2014.
: Chapter 13: Finding Basic Shapes 1 Montri Karnjanadecha ac.th/~montri Image Processing.
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
April 21, 2016Introduction to Artificial Intelligence Lecture 22: Computer Vision II 1 Canny Edge Detector The Canny edge detector is a good approximation.
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
Image Representation and Description – Representation Schemes
Computer and Robot Vision I
Digital Image Processing Lecture 20: Representation & Description
Mean Shift Segmentation
Computer Vision Lecture 12: Image Segmentation II
Fitting Curve Models to Edges
Computer and Robot Vision I
ECE 692 – Advanced Topics in Computer Vision
Computer and Robot Vision I
Computer and Robot Vision I
Computer and Robot Vision I
Computer and Robot Vision I
Computer and Robot Vision I
Computer and Robot Vision I
Computer and Robot Vision I
Finding Line and Curve Segments from Edge Images
Computer and Robot Vision I
Computer and Robot Vision I
Introduction to Artificial Intelligence Lecture 22: Computer Vision II
Presentation transcript:

Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C. Computer and Robot Vision I Chapter 11 Arc Extraction and Segmentation Presented by: 傅楸善 & 徐位文 R 指導教授 : 傅楸善 博士

11.1 Introduction Grouping Operation : segmented or labeled image sets or sequences of labeled or border pixel positions. extracting sequences of pixels : pixels which belong to the same curve group together sequence of pixels segment features DC & CV Lab. CSIE NTU

11.1 Introduction edge detection: label each pixel as edge or not additional properties: edge direction, gradient magnitude, edge contrast…. grouping operation: edge pixels participating in the same region boundary are group together into a sequence. boundary sequence simple pieces analytic descriptions shape-matching DC & CV Lab. CSIE NTU

11.2 Extracting Boundary Pixels from a Segmented Image Regions has been determined by segmentation or connected components boundary of each region can be extracted Boundary extraction for small-sized images: 1. scan through the image  first border of each region 2. first border of each region  follow the border of the connected component around in a clockwise direction until reach itself DC & CV Lab. CSIE NTU

11.2 Extracting Boundary Pixels from a Segmented Image Boundary extraction for small-sized images:  memory problems  border-tracking algorithm : border Border: 1. input: symbolic image 2. output: a clockwise-ordered list of the coordinates of its border pixels 3. in one left-right, top-bottom scan through the image DC & CV Lab. CSIE NTU

Border-Tracking Algorithm DC & CV Lab. CSIE NTU

Border-Tracking Algorithm DC & CV Lab. CSIE NTU

Border-Tracking Algorithm DC & CV Lab. CSIE NTU

Border-Tracking Algorithm DC & CV Lab. CSIE NTU

Border-Tracking Algorithm DC & CV Lab. CSIE NTU

Border-Tracking Algorithm DC & CV Lab. CSIE NTU

Border-Tracking Algorithm DC & CV Lab. CSIE NTU

Border-Tracking Algorithm DC & CV Lab. CSIE NTU

Border-Tracking Algorithm DC & CV Lab. CSIE NTU

Border-Tracking Algorithm DC & CV Lab. CSIE NTU

Border-Tracking Algorithm …………………………… DC & CV Lab. CSIE NTU

Border-Tracking Algorithm DC & CV Lab. CSIE NTU

Border-Tracking Algorithm CHAINSET (1)  (3,2)  (3,3)  (3,4)  (4,4)  (5,4) (1)  (4,2)  (5,2)  (5,3) (2)  (2,5)  (2,6)  (3,6)  (4,6)  (5,6)  (6,6) (2)  (3,5)  (4,5)  (5,5)  (6,5) CHAINSET (1)  (3,2)  (3,3)  (3,4)  (4,4)  (5,4)  (5,3)  (5,2)  (4,2) (2)  (2,5)  (2,6)  (3,6)  (4,6)  (5,6)  (6,6)  (6,5)  (5,5)  (4,5)  (3,5) DC & CV Lab. CSIE NTU

Border-Tracking Algorithm DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines Border tracking: each border bounded a closed region  NO any point would be split into two or more segments. Tracking edge(line) segments: more complex  not necessary for edge pixel to bound closed region  segments consist of connected edge pixels that go from endpoint, corner, or junction to endpoint, corner, or junction. DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines pixeltype()  determines a pixel point an isolated point / the starting point of an new segment / an interior pixel of an old segment / an ending point of an old segment / a junction / a corner DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.3 Linking One-Pixel-Wide Edges or Lines DC & CV Lab. CSIE NTU

11.4 Edge and Line Linking Using Directional Information edge_track : no directional information edge(line) linking: pixels that have similar enough direction  form connected chains and be identified as an arc segment (good fit to a simple curvelike line) DC & CV Lab. CSIE NTU

11.5 Segmentation of Arcs into Simple Segments Arc segmentation: partition extracted digital arc sequence  digital arc subsequences ( each is a maximal sequence that can fit a straight or curve line ) The endpoints of the subsequences are called corner points or dominant points. DC & CV Lab. CSIE NTU

DC & CV Lab. CSIE NTU 11.5 Segmentation of Arcs into Simple Segments simple arc segment: straight-line or curved- arc segment techniques: from iterative endpoint fitting, splitting to using tangent angle deflection, prominence, or high curvature as basis of segmentation

DC & CV Lab. CSIE NTU Iterative Endpoint Fit and Split To segment a digital arc sequence into subsequences that are sufficiently straight. one distance threshold d* L={(r,c)| αr+βc+γ=0} where |(α,β)|=1 d i =| αr i +βc i +γ | / |(α,β)| = | αr i +βc i +γ | d m =max(d i ) If d m > d*, then split at the point (r m,c m )

DC & CV Lab. CSIE NTU Iterative Endpoint Fit and Split

DC & CV Lab. CSIE NTU Iterative Endpoint Fit and Split L d m =max(d i )

DC & CV Lab. CSIE NTU Iterative Endpoint Fit and Split L d m =max(d i )

DC & CV Lab. CSIE NTU Tangential Angle Deflection To identify the locations where two line segments meet and form an angle. a n (k)=(r n-k – r n, c n-k - c n ) b n (k)=(r n – r n+k, c n -c n-k )

DC & CV Lab. CSIE NTU Tangential Angle Deflection

DC & CV Lab. CSIE NTU Tangential Angle Deflection (r n-k – r n, c n-k - c n ) (r n – r n+k, c n -c n-k )

DC & CV Lab. CSIE NTU Tangential Angle Deflection (r n-k – r n, c n-k - c n ) (r n – r n+k, c n -c n-k ) a n (k) b n (k)

DC & CV Lab. CSIE NTU Tangential Angle Deflection At a place where two line segments meet  the angle will be larger  cosθ n (k n ) smaller A point at which two line segments meet cosθ n (k n ) < cosθ i (k i ) for all i,|n-i| ≦ k n /2 k ?

DC & CV Lab. CSIE NTU Uniform Bounded-Error Approximation segment arc sequence into maximal pieces whose points deviate ≤ given amount optimal algorithms: excessive computational complexity

DC & CV Lab. CSIE NTU Breakpoint Optimization after an initial segmentation: shift breakpoints to produce a better arc segmentation first  shift odd final point (i.e. even beginning point) and see whether the max. error is reduced by the shift. If reduced, then keep the shifted breakpoints. then  shift even final point (i.e. odd beginning point) and do the same things.

DC & CV Lab. CSIE NTU Split and Merge first: split arc into segments with the error sufficiently small second: merge successive segments if resulting merged segment has sufficiently small error third: try to adjust breakpoints to obtain a better segmentation repeat: until all three steps produce no further change

DC & CV Lab. CSIE NTU Isodata Segmentation iterative isodata line-fit clustering procedure: determines line-fit parameter then each point assigned to cluster whose line fit closest to the point

DC & CV Lab. CSIE NTU Curvature The curvature is defined at a point of arc length s along the curve by Δs : the change in arc length Δθ : the change in tangent angle

Curvature DC & CV Lab. CSIE NTU

Curvature DC & CV Lab. CSIE NTU

DC & CV Lab. CSIE NTU Curvature natural curve breaks: curvature maxima and minima curvature passes: through zero local shape changes from convex to concave

DC & CV Lab. CSIE NTU Curvature surface elliptic: when limb in line drawing is convex surface hyperbolic: when its limb is concave surface parabolic: wherever curvature of limb zero cusp singularities of projection: occur only within hyperbolic surface

DC & CV Lab. CSIE NTU Curvature Nalwa, A Guided Tour of Computer Vision, Fig. 4.14

11.6 Hough Transform Hough Transform: method for detecting straight lines and curves on gray level images. Hough Transform: template matching The Hough transform algorithm requires an accumulator array whose dimension corresponds to the number of unknown parameters in the equation of the family of curves being sought. DC & CV Lab. CSIE NTU

Finding Straight-Line Segments Line equation  y=mx+b point  (x,y) slope  m, intercept  b DC & CV Lab. CSIE NTU x y b m 1=m+b . (1,1)

Finding Straight-Line Segments Line equation  y=mx+b point  (x,y) slope  m, intercept  b DC & CV Lab. CSIE NTU x y b m 1=m+b . (1,1)

Finding Straight-Line Segments Line equation  y=mx+b point  (x,y) slope  m, intercept  b DC & CV Lab. CSIE NTU x y b m 1=m+b . (2,2) . (1,1) 2=2m+b

Finding Straight-Line Segments Line equation  y=mx+b point  (x,y) slope  m, intercept  b DC & CV Lab. CSIE NTU x y b m 1=m+b . (2,2) . (1,1) 2=2m+b (1,0) y=1*x+0

Example DC & CV Lab. CSIE NTU . x y b m (1,1) . . . . ( 1,0) ( 0,1) ( 2,1) ( 3,2) (1,0) (2,1) (3,2) (0,1)

Example DC & CV Lab. CSIE NTU . x y b m (1,1) . . . . ( 1,0) ( 0,1) ( 2,1) ( 3,2) (1,0) (2,1) (3,2) (0,1) (1,-1) y=1 y=x-1

Finding Straight-Line Segments Vertical lines  m=∞  doesn’t work d : perpendicular distance from line to origin θ : the angle the perpendicular makes with the x-axis (column axis) DC & CV Lab. CSIE NTU

Finding Straight-Line Segments DC & CV Lab. CSIE NTU . (dsinθ,dcosθ)

Finding Straight-Line Segments DC & CV Lab. CSIE NTU . (dsinθ,dcosθ) .(r,c).(r,c)

Finding Straight-Line Segments DC & CV Lab. CSIE NTU . (dsinθ,dcosθ) .(r,c).(r,c)

Finding Straight-Line Segments DC & CV Lab. CSIE NTU . (dsinθ,dcosθ) .(r,c).(r,c) sinΦ cosΦ Φ

Finding Straight-Line Segments DC & CV Lab. CSIE NTU . (dsinθ,dcosθ) .(r,c).(r,c) sinΦ cosΦ Φ θ -Φ

DC & CV Lab. CSIE NTU

DC & CV Lab. CSIE NTU

Example DC & CV Lab. CSIE NTU . y . . . . ( 1,1) ( 1,0) ( 0,1) ( 2,1) ( 3,2) x . r . . . . ( 1,1) ( 0,1) ( 1,0) ( 1,2) ( 2,3) c

Example DC & CV Lab. CSIE NTU . r . . . . ( 1,1) ( 0,1) ( 1,0) ( 1,2) ( 2,3) c -45°0°45°90° (0,1) (1,0) (1,1) (1,2) (2,3)

Example DC & CV Lab. CSIE NTU accumulator array ° ° ° ° °0°45°90° (0,1) (1,0) (1,1) (1,2) (2,3)

Example DC & CV Lab. CSIE NTU accumulator array ° ° ° ° . r . . . ( 1,1) ( 0,1) ( 1,0) ( 1,2) ( 2,3) c .

Example DC & CV Lab. CSIE NTU accumulator array ° ° ° ° . r . . . ( 1,1) ( 0,1) ( 1,0) ( 1,2) ( 2,3) c .

Example DC & CV Lab. CSIE NTU r c

Example DC & CV Lab. CSIE NTU r c d -d

Example DC & CV Lab. CSIE NTU r c d d θ

Finding Straight-Line Segments DC & CV Lab. CSIE NTU

DC & CV Lab. CSIE NTU Finding Circles : row : column : row-coordinate of the center : column-coordinate of the center : radius : implicit equation for a circle

Finding Circles DC & CV Lab. CSIE NTU

Extensions The Hough transform method can be extended to any curve with analytic equation of the form, where denotes an image point and is a vector of parameters. DC & CV Lab. CSIE NTU

DC & CV Lab. CSIE NTU 11.7 Line Fitting  points before noise perturbation  lie on the line  noisy observed value   independent and identically distributed with mean 0 and variance

DC & CV Lab. CSIE NTU 11.7 Line Fitting procedure for the least-squares fitting of line to observed noisy values principle of minimizing the squared residuals under the constraint that Lagrange multiplier form:

DC & CV Lab. CSIE NTU Principal-Axis Curve Fit The principal-axis curve fit is obviously a generalization of the line-fitting idea. The curve e.g. conics :

DC & CV Lab. CSIE NTU Principal-Axis Curve Fit The curve minimize 

11.9 Robust Line Fitting Fit insensitive to a few outlier points Give a least-squares formulation first and then modify it to make it robust.

11.9 Robust Line Fitting In the weighted least-squares sense:

DC & CV Lab. CSIE NTU Least-Squares Curve Fitting Determine the parameters of the curve that minimize the sum of the squared distances between the noisy observed points and the curve.

DC & CV Lab. CSIE NTU Least-Squares Curve Fitting ‧ ‧

DC & CV Lab. CSIE NTU Least-Squares Curve Fitting ‧ ‧ ‧

DC & CV Lab. CSIE NTU Least-Squares Curve Fitting Distance d between and the curve :

Gradient Descent First-order iterative technique in minimization problem Initial value : (t+1)-th iteration  First-order Taylor series expansion around should be in the negative gradient direction

DC & CV Lab. CSIE NTU Newton Method Second-order iterative technique in minimization problem Second-order Taylor series expansion around H  second-order partial derivatives, Hessian Take partial derivatives to zero with respect to

DC & CV Lab. CSIE NTU Fitting to a Circle Circle :

DC & CV Lab. CSIE NTU Fitting to a Circle . ‧‧ ‧ ‧ ‧ ‧ R R dcdc dcdc d d

DC & CV Lab. CSIE NTU Fitting to a Conic In conic :

DC & CV Lab. CSIE NTU Second-Order Approximation to Curve Fitting ==Nalwa, A Guided Tour of Computer Vision, Fig. 4.15==

DC & CV Lab. CSIE NTU Uniform Error Estimation Nalwa, A Guided Tour of Computer Vision, Fig. 3.1

The End DC & CV Lab. CSIE NTU