SUSPENSIONS Pisa S.Braccini C.Bradaschia R.Cavalieri G.Cella V.Dattilo A.Di Virgilio F.Fidecaro F.Frasconi A.Gennai G.Gennaro A.Giazotto L.Holloway F.Paoletti.

Slides:



Advertisements
Similar presentations
Cascina, January 25th, Coupling of the IMC length noise into the recombined ITF output Raffaele Flaminio EGO and CNRS/IN2P3 Summary - Recombined.
Advertisements

Takanori Sekiguchi Italy-Japan Workshop (19 April, 2013) Inverted Pendulum Control for KAGRA Seismic Attenuation System 1 D2, Institute for Cosmic Ray.
April 27th, 2006 Paola Puppo – INFN Roma ILIAS Cryogenic payloads and cooling systems (towards a third generation interferometer) part II: the Vibration.
Payload design methods versus modeling E. Majorana.
Seismic attenuation chains concept, design and advancement status Riccardo DeSalvo for the KAGRA Seismic group JGW-G September 10, 20121JGW-G
1 Virgo commissioning status M.Barsuglia LAL Orsay.
F. Frasconi I.N.F.N. Pisa for the Virgo Collaboration TAUP2007 Sendai, September 11-15, 2007 VIRGO EXPERIMENT VIRGO: a large interferometer for Gravitational.
Suspended Mirror control: Learning through Virgo Experience E. Majorana - I.N.F.N. Pisa Aspen GWAD February 16, 2004.
rd ILIAS-GW annual general meeting 1 VIRGO Commissioning progress J. Marque (EGO)
LIGO-G D 1 Requirements Environment and constraints Performance requirements Functional requirements.
LIGO-G W Commissioning Data on Vibration Isolation & Suspensions Fred Raab 24 October 02.
Thursday, 18 March 2004 Andrea Viceré, Urbino University 1/34 Issues in the Virgo mechanical simulation Why a mechanical simulation How the simulation.
Use ofSiesta in VIRGO commissioning Lisa Barsotti University of Pisa – INFN Pisa For the Virgo collaboration Caltech, December 19th 2003.
ICRR M2 Takanori Sekiguchi ICRR, NAOJ A, ERI B, Sannio Univ. C, INFN Roma D, NIKHEF E, AEI F Ryutaro Takahashi, Kazuhiro Yamamoto, Takashi Uchiyama, Hideharu.
Present Superatttenuator performance vs. AdV & ET Requirements S.Braccini for Virgo Suspension group.
Virgo Control Noise Reduction
Thoughts on short term improvements for Mirror Suspension Control G.Losurdo - P.Ruggi.
Interferometer Control Matt Evans …talk mostly taken from…
ILIAS – WG1 Hierarchical suspension control G.Losurdo INFN Firenze.
07. July 2004 Andreas Freise Status of VIRGO A. Freise For the Virgo Collaboration European Gravitational Observatory.
Experimental tests of SA simulation Irene Fiori – Simulation Workshop – March 18, 2004 Virgo dataSiesta simulation 1. Inertial Damping simulation  test.
Seismic Attenuation System (SAS) for LCGT Inverted pendulum: 30mHz 3 cascaded GAS filter: 500mHz Test mass suspension: triple pendulum Transfer functions.
Takanori Sekiguchi External Review Control and tuning of suspension 1 T. Sekiguchi KAGRA 4th External Review.
1 Virgo Commissioning progress ILIAS, Nov 13 th 2006 Matteo Barsuglia on behalf of the Commissioning Team.
Minimizing the Resonant Frequency of MGAS Springs for Seismic Attenuation System in Low Frequency Gravitational Waves Interferometers Maddalena Mantovani,
SUSPENSION Performance vs. Specs PASSIVE ATTENUATION IN BAND: OK for AdV MIRROR HOR. SWING DAMPING “IN VELOCITY”: Ok for Locking in Adv MIRROR HOR. SWING.
Behavior of an inverted pendulum in the Kamioka mine R. Takahashi (NAOJ), A. Takamori (ERI), E. Majorana (INFN) GWADW 2010 We are investigating behavior.
LCGT Technical Review Suspension Point Interferometer for Parasitic Noise Reduction and an Additional IFO S.Miyoki (ICRR, Univ. of TOKYO)
HAM-SAS fabrication weekly CALTECH, 4/26/06 V. Boschi, V. Sannibale HAM-SAS Mechanical Model Present Status.
External forces from heat links in cryogenic suspensions D1, ICRR, Univ. Tokyo Takanori Sekiguchi GWADW in Hawaii.
1 The Virgo noise budget Romain Gouaty For the Virgo collaboration GWADW 2006, Isola d’Elba.
Abstract The Hannover Thermal Noise Experiment V. Leonhardt, L. Ribichini, H. Lück and K. Danzmann Max-Planck- Institut für Gravitationsphysik We measure.
MSC - 18 Oct 071 LOW FREQUENCY SEISMIC NOISE: LOCKING AND SENSITIVITY ISSUE Paolo Ruggi noise meeting.
New in-air seismic attenuation system for the next generation gravitational wave detector M.R. Blom, A. Bertolini, E. Hennes, A. Schimmel, H.J. Bulten,
LIGO-G Z The Status of VIRGO E. Tournefier for the Virgo Collaboration GWADW 2004, Aspen From the CITF to VIRGO Commissioning of the Fabry-Perot.
1 LESSONS FROM VIRGO+ May 17th 2010 E. Calloni for the Virgo collaboration.
M. Mantovani, ILIAS Meeting 7 April 2005 Hannover Linear Alignment System for the VIRGO Interferometer M. Mantovani, A. Freise, J. Marque, G. Vajente.
The status of VIRGO Edwige Tournefier (LAPP-Annecy ) for the VIRGO Collaboration HEP2005, 21st- 27th July 2005 The VIRGO experiment and detection of.
VIRGO LAPP – Annecy NIKHEF – Amsterdam INFN – Firenze-Urbino INFN – Frascati IPN – Lyon INFN – Napoli OCA – Nice LAL – Orsay ESPCI – Paris INFN – Perugia.
The VIRGO Suspensions Control System Alberto Gennai The VIRGO Collaboration.
MSC winter, short-term schedule Commissioning meeting Cascina 2 Oct 2006.
The control of the Virgo Superattenuator: present and future Giovanni Losurdo - INFN Firenze/Urbino on behalf of the Virgo Collaboration.
Paolo La Penna ILIAS N5-WP1 meeting Commissioning Progress Hannover, July 2004 VIRGO commissioning progress report.
1 ATF2 Project Meeting December 2006 Ground Stabilisation with the CERN STACIS 2000 Stable Active Control Isolation System LAViSta Laboratories in.
Aligning Advanced Detectors L. Barsotti, M. Evans, P. Fritschel LIGO/MIT Understanding Detector Performance and Ground-Based Detector Designs LIGO-G
Low frequency anti-vibration system of LCGT Vibration Isolation Group R. Takahashi (ICRR), K. Yamamoto (ICRR), T. Uchiyama (ICRR), T. Sekiguchi (ICRR),
Dangers of controls from the cryogenic links. The LCGT-SAS Seismic Attenuation System i-LCGT is a modern, simplified and improved version of the Virgo.
External forces from heat links in cryogenic suspensions D1, ICRR, Univ. Tokyo Takanori Sekiguchi.
LIGO-G Z March 2007, LSC meeting, Osamu Miyakawa 1 Osamu Miyakawa Hiroaki Yamamoto March 21, 2006 LSC meeting Modeling of AdLIGO arm lock acquisition.
Caltech, February 12th1 Virgo central interferometer: commissioning and engineering runs Matteo Barsuglia Laboratoire de l’Accelerateur Lineaire, Orsay.
SAT Plans for System R&D Signal Recycling Construction and A&I Short Suspension Upgrade Roberto Passaquieti Università di Pisa and INFN-Pisa AdV Review.
NLC - The Next Linear Collider Project Keeping Nanometer Beams Colliding Vibration Stabilization of the Final Doublet Tom Himel SLAC NLC MAC review October.
LSC Meeting Baton Rouge, LA, V.Boschi for the HAM-SAS team Ben Abbott, Valerio Boschi, Dennis Coyne, Michael Forte, Jay Heefner, Yu-mei Huang,
Active Vibration Isolation using a Suspension Point Interferometer Youichi Aso Dept. Physics, University of Tokyo ASPEN Winter Conference on Gravitational.
Filter #7 control April 18, 2016 –, Cascina Paolo Ruggi.
Yoichi Aso Columbia University, New York, NY, USA University of Tokyo, Tokyo, Japan July 14th th Edoardo Amaldi Conference on Gravitational Waves.
Advanced SA Specifications & Scientific Motivations S.Braccini, Cascina 21 Settembre 2007.
Paola Puppo INFN – Rome Thermal Noise Meeting – “Sapienza”-Rome - February 26 th 2008.
VIRGO Superattenuator performance and its evolution in the SAFE Project F. Frasconi – INFN Pisa (ET-WP2 Workshop – Roma – February 27, 2009)
Last stage SA F7 monitor/control
Type-A SAS Local Control Simulation (Current Status)
VIRGO–KAGRA Meeting about bottom filter damping
Present Superattenuator performance vs. ET Requirements S
Control of the KAGRA Cryogenic Vibration Isolation System
External forces from heat links in cryogenic suspensions
Superattenuator for LF and HF interferometers
The Superattenuator upgrades and the SAFE Project
LIGO Detector Commissioning
LIGO Detector Commissioning
HAM-SAS Mechanics Status of modeling V.Boschi, V. Sannibale.
Presentation transcript:

SUSPENSIONS Pisa S.Braccini C.Bradaschia R.Cavalieri G.Cella V.Dattilo A.Di Virgilio F.Fidecaro F.Frasconi A.Gennai G.Gennaro A.Giazotto L.Holloway F.Paoletti R.Passaquieti D.Passuello R.Poggiani Florence-Urbino E.Cuoco G.Calamai G.Guidi G.Losurdo M.Mazzoni R.Stanga F.Vetrano A.Vicere’ Rome M.Bonafede E.Bompiani E.Majorana P.Puppo P.Rapagnani F.Ricci Naples E.Calloni L.DiFiore M.Varvella Perugia P.Amico L.Carbone F.Marchesoni L.Gammaitoni M.Punturo H.Vocca S.Braccini EGO G.Ballardin A.Gennai G.Gennaro P.Lapenna R.Taddei LIGO-G D

Introduction Mirror Swing Reduction Mirror Local Controls Attenuation Measurements

Extend the detection band down to a few Hz VIRGO GOAL Ground Seismic Vibrations are very strong below several tens of Hz

VIRGO Suspensions SA design e freccette Residual seismic mirror vibrations below the thermal noise floor starting from a few Hz Ground Mirror

SA design e freccette Seismic Noise  f -2 m Hz -1/2 ~ f -5/2 m Hz -1/2 Mirror Thermal Displacement Specification on Horizontal transmission 8 orders of magnitude a few Hz

Specification on Vertical transmission SA design e freccette Seismic Noise  f -2 m Hz -1/2 ~ f -5/2 m Hz -1/2 Mirror Thermal Displacement Several orders of magnitude a few Hz

Suspension Working Principle ground mirror Horizontal Attenuation Long Pendula !!! resonances f -2N Transfer Function Frequency (Hz) 2 Hz

SA design e freccette 8 m Chain maximum horizontal frequency around 2 Hz Suspension Working Principle

resonances f -2N Transfer Function Frequency (Hz) Vertical Attenuation Soft Springs !!! ground mirror 2 Hz

Suspension Working Principle SA design e freccette

Blade Spring Top View Blade Spring Side View Blade Springs

Mechanical Filter K tot = K blades - K magnets Chain maximum vertical frequency around 2 Hz

6 m-long Inverted Pendulum Top filter Pre-Isolator Ground Flex Joint Filter Chain

Pre-Isolator M L Flex joint (elastic element) Ultra - low frequency oscillator (30 mHz) INVERTED PENDULUM g

6 m-long Inverted Pendulum Filter Chain Ground Pre-Isolator F = K x = M   x

Expected Performances Hor Ver Transfer Function Freq (Hz)

Crossing point Expected Residual Seismic Noise “Seismic Wall”

Beam Splitter

SA design e freccette Top Stage Actuators 3 Lines 2.25 Hz 4.1 Hz 9.8 Hz Direct Measurement Central Interferometer used as sensor

Results for Horizontal 2.25 Hz 5  10e-6

Results for Horizontal 4.1 Hz < 6  10e-8 This is only an upper limit !!!

SA design e freccette Attenuation by Inverted Pendulum Measured Horizontal Transmission Ground Seismic Noise  f -2 m Hz -1/2 Input Top Seismic Noise

Top Stage Seismic Noise on beam direction 7  m  Hz -1/2 Top Ground

Residual Mirror Seismic Noise Input Seismic Noise on Top Stage 7  m  Hz -1/2 X Chain Transmission Upper Limit 6  Upper Limit of Residual Noise 4  m  Hz -1/2

Residual Seismic Noise Upper 4.1 Hz 4  m  Hz -1/2 < Thermal 4.1 Hz 9  m  Hz -1/2 !!! Mirror displacement induced by horizontal seismic noise

Measured Vertical 2.25 Hz 1.5  10e-6

Measured Vertical 4.15 Hz < 10e-8

Top Stage Seismic Noise 2  m  Hz -1/2 Top Ground

Residual Seismic Noise Upper 4.1 Hz 2  m  Hz -1/2 < Thermal 4.1 Hz 9  m  Hz -1/2 !!! Mirror displacement induced by vertical seismic noise

Passive attenuation is enough but ….….... Chain resonant frequencies (0.1 Hz < f < 2 Hz) induce tens of microns mirror swings

Mirror swing reduction 1 – Help locking acquisition Crossing   Permanence time has to be small Mirror Optical Surface

2 - Allow noiseless control of the interferometer Maximum compensation “close to the mirror” is about one micron Mirror Mirror swing reduction

Specifications for mirror swing rms mirror velocity smaller than a few tenths of micron per second rms mirror displacement smaller than one micron (on a time scale of 10 s)

6 m-long Inverted Pendulum Filter Chain Top stage Fixed Stars Floor Inertial Damping

ADC DSPDAC Inertial Damping Coil-Magnet Actuators Accelerometers

Accelerometer Signal Lp Butterworth filter Integrator T … N Slices rms Inertial Damping Stability N consecutive measurements of rms velocity

WI PR BSNI Distribution of 10 s velocity rms Inertial Damping Stability

Top-stage RMS Time (s) rms velocity (  m/s) Open Loop Closed Loop

 m/s  Hz -1/2 Hz Mirror velocity spectrum Inverted Pendulum Spectral Region Pendulum Chain Mode 0.45 Hz Mode

Inverted Pendulum Spectral Region Pendulum Chain Mode 0.45 Hz Mode Mirror velocity spectrum mm Hz 0.5 microns per second  m/s

Mirror velocity spectrum Fringe signal

Actual Contribution to velocity rms is 0.37  m/s Cure Better crossing LVDT-Accelerometers in Inertial Damping Loop or Top Stage Control IP Contribute

Pendulum Contribute Actual Contribution to velocity rms is 0.26  m/s Cure Damping from ground based actuators

Actual Contribution to velocity rms is 0.13  m/s Cure Inertial Damping from Top 0.45 Hz Contribute

Inverted Pendulum Spectral Region Pendulum Chain Mode 0.45 Hz Mode Mirror velocity spectrum mm Hz 0.5 microns per second  m/s

SA design e freccette Is the mirror slow ?

Mirror Displacement Rms displacement is a few tenths of  100 mHz

Mirror Swing Specifications rms mirror velocity smaller than a few tenths of microns per second rms mirror displacement smaller than one micron on time scales larger than 10 s

Last Stage Coils Marionetta Mirror Reference Mass Beam Reference Mass Mirror Beam Coils Marionetta

Digital Camera reads the mirror position in all degrees of freedom

Mirror Angular Control Specifications To reduce angular swings from a few tens of microradians down to one microradian Pitch Swing  x Yaw Swing  y

Angular displacements xx yy

rms angular displacement (microradians) Theta x Theta y Angular rms 1  rad Time (seconds) 0.1 1

CONCLUSIONS Vertical and horizontal seismic vibrations induce mirror displacements smaller than thermal noise even around 4 Hz The mirror swing amplitude has been decreased within the specifications Camera control reduces the angular swings of the mirror down to less than one microradian