Lecture 35: Chapter 6 Today’s topic –I/O Overview 1.

Slides:



Advertisements
Similar presentations
1 Lecture 22: I/O, Disk Systems Todays topics: I/O overview Disk basics RAID Reminder: Assignment 8 due Tue 11/21.
Advertisements

I/O Chapter 8. Outline Introduction Disk Storage and Dependability – 8.2 Buses and other connectors – 8.4 I/O performance measures – 8.6.
Lecture 21Comp. Arch. Fall 2006 Chapter 8: I/O Systems Adapted from Mary Jane Irwin at Penn State University for Computer Organization and Design, Patterson.
1  1998 Morgan Kaufmann Publishers Interfacing Processors and Peripherals.
CSCE 212 Chapter 8 Storage, Networks, and Other Peripherals Instructor: Jason D. Bakos.
Lecture Objectives: 1)Explain the limitations of flash memory. 2)Define wear leveling. 3)Define the term IO Transaction 4)Define the terms synchronous.
Avishai Wool lecture Introduction to Systems Programming Lecture 8 Input-Output.
EE30332 Ch8 DP – 1 Ch 8 Interfacing Processors and Peripherals Buses °Fundamental tool for designing and building computer systems divide the problem into.
Input-output and Communication Prof. Sin-Min Lee Department of Computer Science.
Interfacing Processors and Peripherals Andreas Klappenecker CPSC321 Computer Architecture.
1  1998 Morgan Kaufmann Publishers Chapter 8 Storage, Networks and Other Peripherals.
Processor Design 5Z0321 Processor Design 5Z032 Chapter 8 Interfacing Processors and Peripherals Henk Corporaal.
1  1998 Morgan Kaufmann Publishers Chapter 8 Interfacing Processors and Peripherals.
1  2004 Morgan Kaufmann Publishers Chapters 8 & 9 (partial coverage)
1 Interfacing Processors and Peripherals I/O Design affected by many factors (expandability, resilience) Performance: — access latency — throughput — connection.
Prof. John Nestor ECE Department Lafayette College Easton, Pennsylvania ECE Computer Organization Lecture 22 - Input/Output.
1 Lecture 21: Virtual Memory, I/O Basics Today’s topics:  Virtual memory  I/O overview Reminder:  Assignment 8 due Tue 11/21.
COMP381 by M. Hamdi 1 Input/Output Systems. COMP381 by M. Hamdi 2 Motivation: Who Cares About I/O? CPU Performance: 60% per year I/O system performance.
Chapter 8: Part II Storage, Network and Other Peripherals.
1 Today I/O Systems Storage. 2 I/O Devices Many different kinds of I/O devices Software that controls them: device drivers.
I/0 devices.
Chapter 6 Storage and Other I/O Topics CprE 381 Computer Organization and Assembly Level Programming, Fall 2013 Zhao Zhang Iowa State University Revised.
Memory/Storage Architecture Lab Computer Architecture Lecture Storage and Other I/O Topics.
Storage & Peripherals Disks, Networks, and Other Devices.
Computer Input & Output Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University.
C OMPUTER O RGANIZATION AND D ESIGN The Hardware/Software Interface 5 th Edition Chapter 5 Storage and Other I/O Topics (condensed lecture)
I/O – Chapter 8 Introduction Disk Storage and Dependability – 8.2 Buses and other connectors – 8.4 I/O performance measures – 8.6.
Disk Access. DISK STRUCTURE Sector: Smallest unit of data transfer from/to disk; 512B 2/4/8 adjacent sectors transferred together: Blocks Read/write heads.
I/O 1 Computer Organization II © McQuain Introduction I/O devices can be characterized by – Behavior: input, output, storage – Partner:
1 (Based on text: David A. Patterson & John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, 3 rd Ed., Morgan Kaufmann,
Interrupts and DMA CSCI The Role of the Operating System in Performing I/O Two main jobs of a computer are: –Processing –Performing I/O manage and.
I/O Example: Disk Drives To access data: — seek: position head over the proper track (8 to 20 ms. avg.) — rotational latency: wait for desired sector (.5.
Lecture 16: Storage and I/O EEN 312: Processors: Hardware, Software, and Interfacing Department of Electrical and Computer Engineering Spring 2014, Dr.
I/O Computer Organization II 1 Introduction I/O devices can be characterized by – Behavior: input, output, storage – Partner: human or machine – Data rate:
I/O Computer Organization II 1 Interconnecting Components Need interconnections between – CPU, memory, I/O controllers Bus: shared communication channel.
August 1, 2001Systems Architecture II1 Systems Architecture II (CS ) Lecture 9: I/O Devices and Communication Buses * Jeremy R. Johnson Wednesday,
Computer Organization CS224 Fall 2012 Lessons 47 & 48.
Input-Output Organization
Modes of transfer in computer
CS2100 Computer Organisation Input/Output – Own reading only (AY2015/6) Semester 1 Adapted from David Patternson’s lecture slides:
Introduction I/O devices can be characterized by – Behaviour: input, output, storage – Partner: human or machine – Data rate: bytes/sec, transfers/sec.
Chapter 5 Input/Output 5.1 Principles of I/O hardware
Chapter 13 – I/O Systems (Pgs ). Devices  Two conflicting properties A. Growing uniformity in interfaces (both h/w and s/w): e.g., USB, TWAIN.
Chapter 6 Storage and Other I/O Topics. Chapter 6 — Storage and Other I/O Topics — 2 Introduction I/O bus connections §6.1 Introduction.
1 Lecture 1: Computer System Structures We go over the aspects of computer architecture relevant to OS design  overview  input and output (I/O) organization.
Chapter 6 Storage and Other I/O Topics. Chapter 6 — Storage and Other I/O Topics — 2 Introduction I/O devices can be characterized by Behaviour: input,
Processor Memory Processor-memory bus I/O Device Bus Adapter I/O Device I/O Device Bus Adapter I/O Device I/O Device Expansion bus I/O Bus.
1 Ó1998 Morgan Kaufmann Publishers Chapter 8 I/O Systems.
BCS361: Computer Architecture I/O Devices. 2 Input/Output CPU Cache Bus MemoryDiskNetworkUSBDVD …
CS 6290 I/O and Storage Milos Prvulovic. Storage Systems I/O performance (bandwidth, latency) –Bandwidth improving, but not as fast as CPU –Latency improving.
1 Lecture 23: Storage Systems Topics: disk access, bus design, evaluation metrics, RAID (Sections )
Chapter 6 — Storage and Other I/O Topics — 1 Introduction I/O devices can be characterized by Behaviour: input, output, storage Partner: human or machine.
10/15: Lecture Topics Input/Output –Types of I/O Devices –How devices communicate with the rest of the system communicating with the processor communicating.
1  2004 Morgan Kaufmann Publishers Page Tables. 2  2004 Morgan Kaufmann Publishers Page Tables.
Chapter 6 Storage and Other I/O Topics. Chapter 6 — Storage and Other I/O Topics — 2 Introduction I/O devices can be characterized by Behaviour: input,
LECTURE 13 I/O. I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access.
Chapter 8 Input/Output An Hong 2015 Fall School of Computer Science and Technology Lecture on Introduction to.
Computer Organization & Design 计算机组成与设计 Weidong Wang ( 王维东 ) College of Information Science & Electronic Engineering 信息与通信工程研究所 Zhejiang.
CSCE 385: Computer Architecture Spring 2014 Dr. Mike Turi I/O.
I/O Lecture notes from MKP and S. Yalamanchili.
Chapter 2: Computer-System Structures
Morgan Kaufmann Publishers Storage and Other I/O Topics
Computer Architecture
Virtual Memory Main memory can act as a cache for the secondary storage (disk) Advantages: illusion of having more physical memory program relocation protection.
Introduction I/O devices can be characterized by I/O bus connections
Operating Systems Chapter 5: Input/Output Management
CSC3050 – Computer Architecture
Chapter 13: I/O Systems.
Presentation transcript:

Lecture 35: Chapter 6 Today’s topic –I/O Overview 1

Introduction I/O devices can be characterized by –Behaviour: input, output, storage –Partner: human or machine –Data rate: bytes/sec, transfers/sec I/O bus connections 2

Dependability Fault: failure of a component –May or may not lead to system failure Service accomplishment Service delivered as specified Service interruption Deviation from specified service FailureRestoration 3

Dependability Measures Reliability: mean time to failure (MTTF) Service interruption: mean time to repair (MTTR) Mean time between failures –MTBF = MTTF + MTTR Availability = MTTF / (MTTF + MTTR) Improving Availability –Increase MTTF: fault avoidance, fault tolerance, fault forecasting –Reduce MTTR: improved tools and processes for diagnosis and repair 4

Disk Storage Nonvolatile, rotating magnetic storage 5

Disk Sectors and Access Access to a sector involves –Queuing delay if other accesses are pending –Seek: move the heads –Rotational latency –Data transfer –Controller overhead 6

Disk Access Example Given –512B sector, 15,000rpm, 4ms average seek time, 100MB/s transfer rate, 0.2ms controller overhead Average read time –4ms seek time + ½ / (15,000/60) = 2ms rotational latency / 100MB/s = 0.005ms transfer time + 0.2ms controller delay = 6.2ms If actual average seek time is 1ms –Average read time = 3.2ms 7

Typical x86 PC I/O System 8

9 Bus Design The bus is a shared resource – any device can send data on the bus (after first arbitrating for it) and all other devices can read this data off the bus The address/control signals on the bus specify the intended receiver of the message The length of the bus determines its speed (hence, a hierarchy makes sense) Buses can be synchronous (a clock determines when each operation must happen) or asynchronous (a handshaking protocol is used to co-ordinate operations)

10 Memory-Mapped I/O Each I/O device has its own special address range  The CPU issues commands such as these: sw [some-data] [some-address]  Usually, memory services these requests… if the address is in the I/O range, memory ignores it  The data is written into some register in the appropriate I/O device – this serves as the command to the device

11 Polling Vs. Interrupt-Driven When the I/O device is ready to respond, it can send an interrupt to the CPU; the CPU stops what it was doing; the OS examines the interrupt and then reads the data produced by the I/O device (and usually stores into memory) In the polling approach, the CPU (OS) periodically checks the status of the I/O device and if the device is ready with data, the OS reads it

12 Direct Memory Access (DMA) Consider a disk read example: a block in disk is being read into memory For each word, the CPU does a lw [destination register] [I/O device address] and a sw [data in above register] [memory-address] This would take up too much of the CPU’s time – hence, the task is off-loaded to the DMA controller – the CPU informs the DMA of the range of addresses to be copied and the DMA lets the CPU know when it is done

DMA/Cache Interaction If DMA writes to a memory block that is cached –Cached copy becomes stale If write-back cache has dirty block, and DMA reads memory block –Reads stale data Need to ensure cache coherence –Flush blocks from cache if they will be used for DMA –Or use non-cacheable memory locations for I/O 13