Lab 1 and 2: Digital System Design Using Verilog

Slides:



Advertisements
Similar presentations
VERILOG: Synthesis - Combinational Logic Combination logic function can be expressed as: logic_output(t) = f(logic_inputs(t)) Rules Avoid technology dependent.
Advertisements

Chapter #10: Finite State Machine Implementation
Simulation executable (simv)
Verilog Overview. University of Jordan Computer Engineering Department CPE 439: Computer Design Lab.
ECE 551 Digital Design And Synthesis
Combinational Logic.
Chap. 6 Dataflow Modeling
Table 7.1 Verilog Operators.
Verilog Intro: Part 1.
Combinational Logic with Verilog Materials taken from: Digital Design and Computer Architecture by David and Sarah Harris & The Essentials of Computer.
SYEN 3330 Digital SystemsJung H. Kim Chapter SYEN 3330 Digital Systems Chapters 4 – Part3: Verilog – Part 1.
Give qualifications of instructors: DAP
 HDLs – Verilog and Very High Speed Integrated Circuit (VHSIC) HDL  „ Widely used in logic design  „ Describe hardware  „ Document logic functions.
Verilog - 1 Writing Hardware Programs in Abstract Verilog  Abstract Verilog is a language with special semantics  Allows fine-grained parallelism to.
Verilog Tutorial Speaker : T.A. Chung-Yuan Lin. Traditional approach Gate level design Schematic design.
CS 151 Digital Systems Design Lecture 37 Register Transfer Level
Digital System Design by Verilog University of Maryland ENEE408C.
ECE C03 Lecture 101 Lecture 10 Finite State Machine Design Hai Zhou ECE 303 Advanced Digital Design Spring 2002.
Introduction.
ELEN 468 Advanced Logic Design
University of Jordan Computer Engineering Department CPE 439: Computer Design Lab.
Overview Logistics Last lecture Today HW5 due today

Verilog Basics Nattha Jindapetch November Agenda Logic design review Verilog HDL basics LABs.
INTRODUCTION TO VERILOG HDL Presented by m.vinoth.
Introduction to FPGA AVI SINGH. Prerequisites Digital Circuit Design - Logic Gates, FlipFlops, Counters, Mux-Demux Familiarity with a procedural programming.
ECE 2372 Modern Digital System Design
Synthesis Presented by: Ms. Sangeeta L. Mahaddalkar ME(Microelectronics) Sem II Subject: Subject:ASIC Design and FPGA.
Introduction Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL) A hardware description language is a language or means used to describe or model a digital.
CS 61C L4.2.2 Verilog II (1) K. Meinz, Summer 2004 © UCB CS61C : Machine Structures Lecture Verilog II Kurt Meinz inst.eecs.berkeley.edu/~cs61c.
1 An Update on Verilog Ξ – Computer Architecture Lab 28/06/2005 Kypros Constantinides.
Digital System 數位系統 Verilog HDL Ping-Liang Lai (賴秉樑)  
Lab7-1 Lab 6: FSM Description Separate combinational and memory circuits –State memory uses FFs –Others are combinational circuits.
1 Workshop Topics - Outline Workshop 1 - Introduction Workshop 2 - module instantiation Workshop 3 - Lexical conventions Workshop 4 - Value Logic System.
CH71 Chapter 7 Hardware Description Language (HDL) By Taweesak Reungpeerakul.
Verilog for Synthesis Ing. Pullini Antonio
Anurag Dwivedi. Basic Block - Gates Gates -> Flip Flops.
Slide 1 2. Verilog Elements. Slide 2 Why (V)HDL? (VHDL, Verilog etc.), Karen Parnell, Nick Mehta, “Programmable Logic Design Quick Start Handbook”, Xilinx.
3/4/20031 ECE 551: Digital System Design * & Synthesis Lecture Set 3 3.1: Verilog - User-Defined Primitives (UDPs) (In separate file) 3.2: Verilog – Operators,
1 Hardware description languages: introduction intellectual property (IP) introduction to VHDL and Verilog entities and architectural bodies behavioral,
The Verilog Hardware Description Language. GUIDELINES How to write HDL code: How to write HDL code:
Finite State Machine (FSM) Nattha Jindapetch December 2008.
M.Mohajjel. Structured Procedures Two basic structured procedure statements always initial All behavioral statements appear only inside these blocks Each.
CSCE 211: Digital Logic Design Chin-Tser Huang University of South Carolina.
Introduction to ASIC flow and Verilog HDL
Introduction to Verilog
Verilog Intro: Part 1. Hardware Description Languages A Hardware Description Language (HDL) is a language used to describe a digital system, for example,
1 University of Jordan Computer Engineering Department CPE 439: Computer Design Lab.
1 Lecture 3: Modeling Sequential Logic in Verilog HDL.
Exp#5 & 6 Introduction to Verilog COE203 Digital Logic Laboratory Dr. Ahmad Almulhem KFUPM Spring 2009.
Examples of Basic Combinational
Overview Logistics Last lecture Today HW5 due today
Hardware Description Languages: Verilog
Verilog Tutorial Fall
Figure 8.1. The general form of a sequential circuit.
EMT 351/4 DIGITAL IC DESIGN Week # Synthesis of Sequential Logic 10.
Introduction Introduction to VHDL Entities Signals Data & Scalar Types
Hardware Description Languages: Verilog
Sequential logic examples
Introduction to DIGITAL CIRCUITS MODELING & VERIFICATION using VERILOG [Part-I]
Behavioral Modeling in Verilog
Introduction to Verilog
SYNTHESIS OF SEQUENTIAL LOGIC
332:437 Lecture 8 Verilog and Finite State Machines
Introduction.
Sequential logic implementation
The Verilog Hardware Description Language
The Verilog Hardware Description Language
332:437 Lecture 8 Verilog and Finite State Machines
COE 202 Introduction to Verilog
Presentation transcript:

Lab 1 and 2: Digital System Design Using Verilog Ming-Feng Chang CSIE, NCTU

Introduction Objectives Target audience NOT in the talk Understand the design methodologies using Verilog Target audience have basic digital circuits design concept use Verilog to design digital systems Verilog description for logic synthesis NOT in the talk a full coverage of Verilog use Verilog for quick behavioral modeling

Contents Verilog HDL Example combinational circuits structured modeling RTL modeling Example combinational circuits structured description (net-list) RTL Example sequential circuits FSM combinational circuits sequential circuits

Verilog history Gateway Design Automation Phil Moorby in 1984 and 1985 Verilog-XL, "XL algorithm", 1986 a very efficient method for doing gate-level simulation Verilog logic synthesizer, Synopsys, 1988 the top-down design methodology is feasible Cadence Design Systems acquired Gateway December 1989 a proprietary HDL

Open Verilog International (OVI), 1991 Language Reference Manual (LRM) making the language specification as vendor-independent as possible. The IEEE 1364 working group, 1994 to turn the OVI LRM into an IEEE standard. Verilog became an IEEE standard December, 1995.

Hardware Description Languages The functionality of hardware concurrency timing controls The implementation of hardware structure net-list ISP C. Gordon Bell and Alan Newell at Carnegie Mellon University, 1972 RTL (register transfer level)

Different Levels of Abstraction Algorithmic the function of the system RTL the data flow the control signals the storage element and clock Gate gate-level net-list Switch transistor-level net-list

Verilog for Digital System Design Structural description net-list using primitive gates and switches continuous assignment using Verilog operators RTL functional description timing controls and concurrency specification procedural blocks (always and initial) registers and latches C + timing controls + concurrency An HDL to specify your design

Hierarchical structure Represent the hierarchy of a design modules the basic building blocks ports the I/O pins in hardware input, output or inout

Modules The principal design entity Module Instatiations Definitions Module Name & Port List Definitions Ports, Wire, Reg, Parameter Module Statements & Constructs Module Instatiations

Examples 4-bit adder module add4 (s,c3,ci,a,b) input [3:0] a,b ; // port declarations input ci ; output [3:0] s : // vector output c3 ; wire [2:0] co ; add a0 (co[0], s[0], a[0], b[0], ci) ; add a1 (co[1], s[1], a[1], b[1], co[0]) ; add a2 (co[2], s[2], a[2], b[2], co[1]) ; add a3 (c3, s[3], a[3], b[3], co[2]) ; endmodule c3 a3 a2 a1 a0 ci

A full-adder module add (co, s, a, b, c) input a, b ,c ; output co, s ; xor (n1, a, b) ; xor (s, n1, c) ; nand (n2, a, b) ; nand (n3,n1, c) ; nand (co, n3,n2) ; endmodule

Data types Net physical wire between devices the default data type used in structural modeling and continuous assignment types of nets wire, tri : default wor, trior : wire-ORed wand, triand : wire-ANDed trireg : with capacitive storage tri1 : pull high tri0 ; pull low supply1 ; power supply0 ; ground

Reg Parameters variables used in RTL description a wire, a storage device or a temporary variable reg : unsigned integer variables of varying bit width integer : 32-bit signed integer real : signed floating-point time : 64-bit unsigned integer Parameters run-time constants

Special Language Tokens $<identifier>: System tasks and functions $time $stop $finish $monitor #<delay specification> used in gate instances and procedural statements unnecessary in RTL specification

Modeling Structures Net-list structural description for the top level Continuous assignments (combination circuits) data flow specification for simple combinational Verilog operators Procedural blocks (RTL) always and initial blocks allow timing control and concurrency C-like procedure statements primitives (=truth table, state transition table) function and task (»function and subroutine)

Gate-Level Modeling Net-list description A full-adder built-in primitives gates A full-adder module add (co, s, a, b, c) input a, b ,c ; output co, s ; xor (n1, a, b) ; xor (s, n1, c) ; nand (n2, a, b) ; nand (n3,n1, c) ; nand (co, n3,n2) ; endmodule

Verilog Primitives Basic logic gates only and or not buf xor nand nor xnor bufif1, bufif0 notif1, notif0

Primitive Pins Are Expandable One output and variable number of inputs not and buf variable number of outputs but only one input nand (y, in1, in2) ; nand (y, in1, in2, in3) ; nand (y, in1, in2, in3, in4) ;

Continuous Assignments Describe combinational logic Operands + operators Drive values to a net assign out = a&b ; // and gate assign eq = (a==b) ; // comparator wire #10 inv = ~in ; // inverter with delay wire [7:0] c = a+b ; // 8-bit adder Avoid logic loops assign a = b + a ; asynchronous design

Operators { } concatenation + - * / arithmetic % modulus + - * / arithmetic % modulus > >= < <= relational ! logical NOT && logical AND || logical OR == logical equality != logical inequality ? : conditional ~ bit-wise NOT & bit-wise AND | bit-wise OR ^ bit-wise XOR ^~ ~^ bit-wise XNOR & reduction AND | reduction OR ~& reduction NAND ~| reduction NOR ^ reduction XOR ~^ ^~ reduction XNOR << shift left >> shift right

Logical, bit-wise and unary operators a = 1011; b = 0010 logical bit-wise unary a || b = 1 a | b = 1011 |a = 1 a && b = 1 a &b = 0010 &a = 0 Conditional operator assign z = ({s1,s0} == 2'b00) ? IA : ({s1,s0} == 2'b01) ? IB : ({s1,s0} == 2'b10) ? IC : ({s1,s0} == 2'b11) ? ID : 1'bx ; assign s = (op == ADD) ? a+b : a-b ;

Operator Precedence [ ] bit-select or part-select ( ) parentheses !, ~ logical and bit-wise negation &, |, ~&, ~|, ^, ~^, ^~ reduction operators +, - unary arithmetic { } concatenation *, /, % arithmetic +, - arithmetic <<, >> shift >, >=, <, <= relational ==, != logical equality & bit-wise AND ^, ^~, ~^ bit-wise XOR and XNOR | bit-wise OR && logical AND || logical OR ? : conditional

RTL Modeling Describe the system at a high level of abstraction Specify a set of concurrently active procedural blocks procedural blocks = digital circuits Procedural blocks initial blocks test-fixtures to generate test vectors initial conditions always blocks can be combinational circuits can imply latches or flip-flops

Procedural blocks have the following components procedural assignment statements timing controls high-level programming language constructs

RTL Statements Procedural and RTL assignments reg & integer out = a + b ; begin . . . end block statements group statements if. . . else statements case statements for loops while loops forever loops disable statements disable a named block

Combinational Always Blocks A complete sensitivity list (inputs) always @(a or b or c) f = a&~c | b&c ; Simulation results always @(a or b) Parentheses always @(a or b or c or d) z = a + b + c + d ; // z = (a+b) + (c+d) ;

Sequential Always Blocks Inferred latches (Incomplete branch specifications) module infer_latch(D, enable, Q); input D, enable; output Q; reg Q; always @ (D or enable) begin if (enable) Q <= D; end endmodule the Q is not specified in a branch a latch like 74373

Combinational Circuit Design Outputs are functions of inputs Examples MUX decoder priority encoder adder inputs Outputs comb. circuits

Multiplexor Net-list (gate-level) module mux2_1 (out,a,b,sel) ; output out ; input a,b,sel ; not (sel_, sel) ; and (a1, a, sel_) ; and (b1, b, sel) ; or (out, a1, b1) ; endmodule

Multiplexor Continuous assignment RTL modeling module mux2_1 (out,a,b,sel) ; output out ; input a,b,sel ; assign out = (a&~sel)|(b&sel) ; endmodule RTL modeling always @(a or b or sel) if(sel) out = b; else out = a;

Multiplexor 4-to-1 multiplexor module mux4_1 (out, in0, in1, in2, in3, sel) ; output out ; input in0,in1,in2,in3 ; input [1:0] sel ; assign out = (sel == 2'b00) ? in0 : (sel == 2'b01) ? in1 : (sel == 2'b10) ? in2 : (sel == 2'b11) ? in3 : 1'bx ; endmodule

out = in[sel] ; module mux4_1 (out, in, sel) ; output out ; input [3:0] in ; input [1:0] sel ; reg out ; always @(sel or in) begin case(sel) 2’d0: out = in[0] ; 2’d1: out = in[1] ; 2’d2: out = in[2] ; 2’d3: out = in[3] ; default: 1’bx ; endcase end endmodule out = in[sel] ;

Decoder 3-to 8 decoder with an enable control module decoder(o,enb_,sel) ; output [7:0] o ; input enb_ ; input [2:0] sel ; reg [7:0] o ; always @ (enb_ or sel) if(enb_) o = 8'b1111_1111 ; else case(sel) 3'b000 : o = 8'b1111_1110 ; 3'b001 : o = 8'b1111_1101 ; 3'b010 : o = 8'b1111_1011 ; 3'b011 : o = 8'b1111_0111 ; 3'b100 : o = 8'b1110_1111 ; 3'b101 : o = 8'b1101_1111 ; 3'b110 : o = 8'b1011_1111 ; 3'b111 : o = 8'b0111_1111 ; default : o = 8'bx ; endcase endmodule

Priority Encoder always @ (d0 or d1 or d2 or d3) if (d3 == 1) {x,y,v} = 3’b111 ; else if (d2 == 1) {x,y,v} = 3’b101 ; else if (d1 == 1) {x,y,v} = 3’b011 ; else if (d0 == 1) {x,y,v} = 3’b001 ; else {x,y,v} = 3’bxx0 ;

Parity Checker module parity_chk(data, parity); input [0:7] data; output parity; reg parity; always @ (data) begin: check_parity reg partial; integer n; partial = data[0]; for ( n = 0; n <= 7; n = n + 1) begin partial = partial ^ data[n]; end parity <= partial; endmodule

Adder RTL modeling Logic synthesis CLA adder for speed optimization module adder(c,s,a,b) ; output c ; output [7:0] s ; input [7:0] a,b ; assign {c,s} = a + b ; endmodule Logic synthesis CLA adder for speed optimization ripple adder for area optimization

Tri-State The value z Another block always @ (sela or a) if (sela) out = a ; else out = 1’bz ; Another block always @(selb or b) if(selb) out =b ; assign out = (sela)? a: 1’bz ;

Registers (Flip-flops) are implied @(posedge clk) or @(negedge clk) a positive edge-triggered D flip-flop always @ (posedge clk) q = d ;

Procedural Assignments Blocking assignments always @(posedge clk) begin rega = data ; regb = rega ; end Non-blocking assignments regc <= data ; regd <= regc ;

Sequential Circuit Design Outputs Inputs Combinational circuit Memory elements a feedback path the state of the sequential circuits the state transition synchronous circuits asynchronous circuits

Examples D flip-flop D latch register shifter counter pipeline FSM

Flip-Flop Synchronous clear Asynchronous clear module d_ff (q,d,clk,clr_) ; output q ; input d,clk,clr_ ; reg q ; always @ (posedge clk) if (~clr_) q = 0 ; else q = d ; endmodule Asynchronous clear always @ (posedge clk or negedge clr_)

Register module register (q,d,clk,clr_, set_) ; output [7:0] q ; input [7:0] d ; input clk,clr_, set_ ; reg [7:0] q ; always @ (posedge clk or negedge clr_ or negedge set_) if (~clr_) q = 0 ; else if (~set_) q = 8’b1111_1111 ; else q = d ; endmodule

D Latches D latch D latch with gated asynchronous data always @ (enable or data) if (enable) q = data ; D latch with gated asynchronous data always @ (enable or data or gate) q = data & gate ;

D latch with gated ‘enable’ always @ (enable or d or gate) if (enable & gate) q = d ; D latch with asynchronous reset always @ (reset or data or gate) if (reset) q = 1’b0 else if(enable) q = data ;

Shifter module shifter (so,si,d,clk,ld_,clr_) ; output so ; input [7:0] d ; input si,clk,ld_,clr_ ; // asynchronous clear and synchronous load reg [7:0] q ; assign so = q[7] ; always @ (posedge clk or negedge clr_) if (~clr_) q = 0 ; else if (~ld_) q = d ; else q[7:0] = {q[6:0],si} ; endmodule ld_ d si shifter so clk

Counter module bcd_counter(count,ripple_out,clr,clk) ; output [3:0] count ; output ripple_out ; reg [3:0] count ; input clr,clk ; wire ripple_out = (count == 4'b1001) ? 0:1 ; // combinational always @ (posedge clk or posedge clr) // combinational + sequential if (clr) ; count = 0 ; else if (count == 4'b1001) else count = count + 1 ; endmodule

Memory module memory (data, addr, read, write); input read, write; input [4:0] addr; inout [7:0] data; reg [7:0] data_reg; reg [7:0] memory [0:8'hff]; parameter load_file = "cput1.txt"; assign data = (read) ? memory [addr] : 8'hz; always @ (posedge write) memory[addr] = data; initial $readmemb (load_file, memory); endmodule

Finite State Machine Moore model Mealy model next state current state inputs comb. circuit memory elements comb. circuit outputs next state current state inputs comb. circuit memory elements comb. circuit outputs

Inefficient Description module count (clock, reset, and_bits, or_bits, xor_bits); input clock, reset; output and_bits, or_bits, xor_bits; reg and_bits, or_bits, xor_bits; reg [2:0] count; always @(posedge clock) begin if (reset) count = 0; else count = count + 1; and_bits = & count; or_bits = | count; xor_bits = ^ count; end endmodule

Six implied registers

Efficient Description Separate combinational and sequential circuits module count (clock, reset, and_bits, or_bits, xor_bits); input clock, reset; output and_bits, or_bits, xor_bits; reg and_bits, or_bits, xor_bits; reg [2:0] count; always @(posedge clock) begin if (reset) count = 0; else count = count + 1; end // combinational circuits always @(count) begin and_bits = & count; or_bits = | count; xor_bits = ^ count; end endmodule

Three registers are used

Mealy Machine Example module mealy (in1, in2, clk, reset,out); input in1, in2, clk, reset; output out; reg current_state, next_state, out; // state flip-flops always @(posedge clk or negedge reset) if (!reset) current_state = 0; else current_state = next_state; // combinational: next-state and outputs always @(in1 or in2 or current_state) case (current_state) 0: begin next_state = 1; out = 1'b0; end 1: if (in1) begin next_state = 1'b0; out = in2; else begin next_state = 1'b1; out = !in2; endcase endmodule

Pipelines An example assign n_sum = a+b assign p = sum * d_c // plus D flip-flops always @ (posedge clk) sum = n_sum ; comb. circuits flip- flops comb. circuits flip- flops comb. circuits flip- flops a n-sum Dff sum b p Dff out c Dff d_c

A FSM Example Traffic Light Controller Picture of Highway/Farmroad Intersection:

Specifications Traffic Light Controller ? Tabulation of Inputs and Outputs: Input Signal reset C TS TL Output Signal HG, HY, HR FG, FY, FR ST Description place FSM in initial state detect vehicle on farmroad short time interval expired long time interval expired assert green/yellow/red highway lights assert green/yellow/red farmroad lights start timing a short or long interval ? Tabulation of Unique States: Some light configuration imply others State S0 S1 S2 S3 Description Highway green (farmroad red) Highway yellow (farmroad red) Farmroad green (highway red) Farmroad yellow (highway red)

The block diagram HR HG HY FR FG FY Comb. circuits FF’s Comb. circuits n_state state TS TL

State transition diagram TL + C Reset S0: HG S1: HY S2: FG S3: FY S0 TL•C/ST TS/ST TS S1 S3 TS TS/ST TL + C/ST S2 TL • C

Verilog Description module traffic_light(HG, HY, HR, FG, FY, FR,ST_o, tl, ts, clk, reset, c) ; output HG, HY, HR, FG, FY, FR, ST_o; input tl, ts, clk, reset, c ; reg ST_o, ST ; reg[0:1] state, next_state ; parameter EVEN= 0, ODD=1 ; parameter S0= 2'b00, S1=2'b01, S2=2'b10, S3=2'b11; assign HG = (state == S0) ; assign HY = (state == S1) ; assign HR = ((state == S2)||(state == S3)) ; assign FG = (state == S2) ; assign FY = (state == S3) ; assign FR = ((state == S0)||(state == S1)) ;

// flip-flops always@ (posedge clk or posedge reset) if(reset) // an asynchronous reset begin state = S0 ; ST_o = 0 ; end else state = next_state ; ST_o = ST ;

always@ (state or c or tl or ts) case(state) // state transition S0: if(tl & c) begin next_state = S1 ; ST = 1 ; end else next_state = S0 ; ST = 0 ; TL + C Reset S0 TL•C/ST TS/ST TS S1 S3 TS TS/ST TL + C/ST S2 TL • C

if (ts) begin next_state = S2 ; ST = 1 ; end else begin if(tl | !c) begin next_state = S3 ; TL + C Reset S0 TL•C/ST TS/ST TS S1 S3 TS TS/ST TL + C/ST S2 TL • C

S3: if(ts) begin next_state = S0 ; ST = 1 ; end else next_state = S3 ; endcase endmodule TL + C Reset S0 TL•C/ST TS/ST TS S1 S3 TS TS/ST TL + C/ST S2 TL • C

Efficient Modeling Techniques Separate combinational and sequential circuits always know your target circuits Separate structured circuits and random logic structured: data path, XORs, MUXs random logic: control logic, decoder, encoder Use parentheses control complex structure .....

Conclusions Verilog modeling Design digital systems structured modeling continuous assignment RTL modeling Design digital systems separate combinational and sequential description always keep your target circuits in mind

Reference Verilog-XL Training Manual, CIC Logic Synthesis Design Kit, CIC HDL Compiler for Verilog Reference Manual, Synopsys Synthesis Application Notes, Synopsys Online Documentation