Models of effective connectivity & Dynamic Causal Modelling (DCM) Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical.

Slides:



Advertisements
Similar presentations
Dynamic Causal Modelling (DCM) for fMRI
Advertisements

Bayesian models for fMRI data
Models of effective connectivity & Dynamic Causal Modelling (DCM) Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical.
Group analyses of fMRI data Methods & models for fMRI data analysis in neuroeconomics November 2010 Klaas Enno Stephan Laboratory for Social and Neural.
Computational and physiological models Part 2 Daniel Renz Computational Psychiatry Seminar: Computational Neuropharmacology 14 March, 2014.
Models of Effective Connectivity & Dynamic Causal Modelling
Bayesian models for fMRI data
Bayesian models for fMRI data Methods & models for fMRI data analysis 06 May 2009 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
Models of effective connectivity & Dynamic Causal Modelling (DCM) Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical.
Hanneke den Ouden Wellcome Trust Centre for Neuroimaging, University College London, UK Donders Institute for Brain, Cognition and Behaviour, Nijmegen,
The General Linear Model (GLM)
DCM for fMRI: Theory & Practice
DCM: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical Research in Economics University of Zurich.
DCM: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical Research in Economics University of Zurich.
J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK Institute of Empirical Research in Economics, Zurich, Switzerland Bayesian inference.
Experimental design of fMRI studies Methods & models for fMRI data analysis 12 November 2008 Klaas Enno Stephan Laboratory for Social and Neural Systems.
Group analyses of fMRI data Methods & models for fMRI data analysis 28 April 2009 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
Multiple comparison correction Methods & models for fMRI data analysis 29 October 2008 Klaas Enno Stephan Branco Weiss Laboratory (BWL) Institute for Empirical.
Group analyses of fMRI data Methods & models for fMRI data analysis 26 November 2008 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
DCM: Advanced topics Rosalyn Moran Wellcome Trust Centre for Neuroimaging Institute of Neurology University College London With thanks to the FIL Methods.
Rosalyn Moran Wellcome Trust Centre for Neuroimaging Institute of Neurology University College London With thanks to the FIL Methods Group for slides and.
GUIDE to The… D U M M I E S’ DCM Velia Cardin. Functional Specialization is a question of Where? Where in the brain is a certain cognitive/perceptual.
Dynamic Causal Modelling THEORY SPM Course FIL, London October 2009 Hanneke den Ouden Donders Centre for Cognitive Neuroimaging Radboud University.
Dynamic Causal Modelling
Measuring Functional Integration: Connectivity Analyses
DCM Advanced, Part II Will Penny (Klaas Stephan) Wellcome Trust Centre for Neuroimaging Institute of Neurology University College London SPM Course 2014.
Dynamic Causal Modelling (DCM) for fMRI
Dynamic Causal Modelling (DCM): Theory Demis Hassabis & Hanneke den Ouden Thanks to Klaas Enno Stephan Functional Imaging Lab Wellcome Dept. of Imaging.
Dynamic Causal Modelling (DCM) for fMRI
18 th February 2009 Stephanie Burnett Christian Lambert Methods for Dummies 2009 Dynamic Causal Modelling Part I: Theory.
Dynamic Causal Modelling for fMRI Friday 22 nd Oct SPM fMRI course Wellcome Trust Centre for Neuroimaging London André Marreiros.
Group analyses of fMRI data Methods & models for fMRI data analysis November 2012 With many thanks for slides & images to: FIL Methods group, particularly.
Bayesian Inference and Posterior Probability Maps Guillaume Flandin Wellcome Department of Imaging Neuroscience, University College London, UK SPM Course,
Dynamic Causal Modelling (DCM) Functional Imaging Lab Wellcome Dept. of Imaging Neuroscience Institute of Neurology University College London Presented.
Dynamic Causal Modelling Will Penny Wellcome Department of Imaging Neuroscience, University College London, UK FMRIB, Oxford, May
J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.
Experimental design of fMRI studies Methods & models for fMRI data analysis 01 November 2013 Klaas Enno Stephan Translational Neuromodeling Unit (TNU)
Dynamic Causal Modelling Advanced Topics SPM Course (fMRI), May 2015 Peter Zeidman Wellcome Trust Centre for Neuroimaging University College London.
Dynamic Causal Modelling for EEG and MEG
Introduction to connectivity: Psychophysiological Interactions Roland Benoit MfD 2007/8.
Experimental design of fMRI studies Methods & models for fMRI data analysis November 2012 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute.
Dynamic Causal Modelling (DCM) Marta I. Garrido Thanks to: Karl J. Friston, Klaas E. Stephan, Andre C. Marreiros, Stefan J. Kiebel,
Dynamic Causal Modelling Introduction SPM Course (fMRI), October 2015 Peter Zeidman Wellcome Trust Centre for Neuroimaging University College London.
Ch. 5 Bayesian Treatment of Neuroimaging Data Will Penny and Karl Friston Ch. 5 Bayesian Treatment of Neuroimaging Data Will Penny and Karl Friston 18.
Bayesian Model Comparison Will Penny London-Marseille Joint Meeting, Institut de Neurosciences Cognitive de la Mediterranee, Marseille, September 28-29,
Dynamic Causal Modelling for fMRI
Dynamic Causal Model for evoked responses in MEG/EEG Rosalyn Moran.
The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM fMRI Course London, May 2012.
Bayesian inference Lee Harrison York Neuroimaging Centre 23 / 10 / 2009.
Dynamic Causal Models Will Penny Olivier David, Karl Friston, Lee Harrison, Andrea Mechelli, Klaas Stephan Mathematics in Brain Imaging, IPAM, UCLA, USA,
Bayesian Inference in SPM2 Will Penny K. Friston, J. Ashburner, J.-B. Poline, R. Henson, S. Kiebel, D. Glaser Wellcome Department of Imaging Neuroscience,
Bayesian selection of dynamic causal models for fMRI Will Penny Olivier David, Karl Friston, Lee Harrison, Andrea Mechelli, Klaas Stephan The brain as.
Dynamic Causal Models Will Penny Olivier David, Karl Friston, Lee Harrison, Stefan Kiebel, Andrea Mechelli, Klaas Stephan MultiModal Brain Imaging, Copenhagen,
5th March 2008 Andreina Mendez Stephanie Burnett
Dynamic Causal Modeling of Endogenous Fluctuations
Effective Connectivity: Basics
Effective Connectivity
Dynamic Causal Modelling (DCM): Theory
Dynamic Causal Model for evoked responses in M/EEG Rosalyn Moran.
Dynamic Causal Modelling
SPM2: Modelling and Inference
Dynamic Causal Modelling for M/EEG
Bayesian Methods in Brain Imaging
CRIS Workshop: Computational Neuroscience and Bayesian Modelling
The General Linear Model (GLM)
Effective Connectivity
M/EEG Statistical Analysis & Source Localization
Bayesian Inference in SPM2
Wellcome Centre for Neuroimaging, UCL, UK.
Will Penny Wellcome Trust Centre for Neuroimaging,
Presentation transcript:

Models of effective connectivity & Dynamic Causal Modelling (DCM) Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical Research in Economics University of Zurich Functional Imaging Laboratory (FIL) Wellcome Trust Centre for Neuroimaging University College London Methods & Models for fMRI data analysis in neuroeconomics November 2010

Overview Brain connectivity: types & definitions –anatomical connectivity –functional connectivity –effective connectivity Psycho-physiological interactions (PPI) Dynamic causal models (DCMs) –DCM for fMRI: Neural and hemodynamic levels –Parameter estimation & inference Applications of DCM to fMRI data –Design of experiments and models –Some empirical examples and simulations

Connectivity A central property of any system Communication systems Social networks (internet) (Canberra, Australia) FIgs. by Stephen Eick and A. Klovdahl; see

Structural, functional & effective connectivity anatomical/structural connectivity = presence of axonal connections functional connectivity =statistical dependencies between regional time series effective connectivity =causal (directed) influences between neurons or neuronal populations Sporns 2007, Scholarpedia

Anatomical connectivity neuronal communication via synaptic contacts visualisation by tracing techniques long-range axons  “association fibres”

Diffusion-weighted imaging Parker & Alexander, 2005, Phil. Trans. B

Parker, Stephan et al. 2002, NeuroImage Diffusion-weighted imaging of the cortico- spinal tract

Why would complete knowledge of anatomical connectivity not be enough to understand how the brain works?

Connections are recruited in a context-dependent fashion Synaptic strengths are context-sensitive: They depend on spatio-temporal patterns of network activity.

Connections show plasticity critical for learning can occur both rapidly and slowly NMDA receptors play a critical role NMDA receptors are regulated by modulatory neurotransmitters like dopamine, serotonine, acetylcholine synaptic plasticity =change in the structure and transmission properties of a chemical synapse Gu 2002, Neuroscience NMDA receptor

Short-term SP & neuromodulation NMDAR-independent –synaptic depression/facilitation –effects due to dendritic backpropagation & voltage- sensitive ion channels NMDAR-dependent –phosphorylation of AMPARs –modulation of EPSPs at NMDARs by DA, ACh, 5HT (gating) through phosphorylation NMDAR trafficking changes in membrane potential Reynolds et al. 2001, Nature Tsodyks & Markram 1997, PNAS peak PSP (mV)

Different approaches to analysing functional connectivity Seed voxel correlation analysis Eigen-decomposition (PCA, SVD) Independent component analysis (ICA) any other technique describing statistical dependencies amongst regional time series

Seed-voxel correlation analyses Very simple idea: –hypothesis-driven choice of a seed voxel → extract reference time series –voxel-wise correlation with time series from all other voxels in the brain seed voxel

Drug-induced changes in functional connectivity Finger-tapping task in first-episode schizophrenic patients: voxels that showed changes in functional connectivity (p<0.005) with the left ant. cerebellum after medication with olanzapine Stephan et al. 2001, Psychol. Med.

Does functional connectivity not simply correspond to co-activation in SPMs? No, it does not - see the fictitious example on the right: Here both areas A 1 and A 2 are correlated identically to task T, yet they have zero correlation among themselves: r(A 1,T) = r(A 2,T) = 0.71 but r(A 1,A 2 ) = 0 ! task T regional response A 2 regional response A 1 Stephan 2004, J. Anat.

Pros & Cons of functional connectivity analyses Pros: –useful when we have no experimental control over the system of interest and no model of what caused the data (e.g. sleep, hallucinations, etc.) Cons: –interpretation of resulting patterns is difficult / arbitrary –no mechanistic insight into the neural system of interest –usually suboptimal for situations where we have a priori knowledge and experimental control about the system of interest models of effective connectivity necessary

For understanding brain function mechanistically, we need models of effective connectivity, i.e. models of causal interactions among neuronal populations.

Some models for computing effective connectivity from fMRI data Structural Equation Modelling (SEM) McIntosh et al. 1991, 1994; Büchel & Friston 1997; Bullmore et al regression models (e.g. psycho-physiological interactions, PPIs) Friston et al Volterra kernels Friston & Büchel 2000 Time series models (e.g. MAR, Granger causality) Harrison et al. 2003, Goebel et al Dynamic Causal Modelling (DCM) bilinear: Friston et al. 2003; nonlinear: Stephan et al. 2008

Overview Brain connectivity: types & definitions –anatomical connectivity –functional connectivity –effective connectivity Psycho-physiological interactions (PPI) Dynamic causal models (DCMs) –DCM for fMRI: Neural and hemodynamic levels –Parameter estimation & inference Applications of DCM to fMRI data –Design of experiments and models –Some empirical examples and simulations

Psycho-physiological interaction (PPI) We can replace one main effect in the GLM by the time series of an area that shows this main effect. E.g. let's replace the main effect of stimulus type by the time series of area V1: Task factor Task A Task B Stim 1 Stim 2 Stimulus factor T A /S 1 T B /S 1 T A /S 2 T B /S 2 GLM of a 2x2 factorial design: main effect of task main effect of stim. type interaction main effect of task V1 time series  main effect of stim. type psycho- physiological interaction Friston et al. 1997, NeuroImage

V1 attention no attention V1 activity V5 activity SPM{Z} time V5 activity Friston et al. 1997, NeuroImage Büchel & Friston 1997, Cereb. Cortex V1 x Att. = V5 V5 Attention Attentional modulation of V1→V5

PPI: interpretation Two possible interpretations of the PPI term: V1 Modulation of V1  V5 by attention Modulation of the impact of attention on V5 by V1 V1V5 V1 V5 attention V1 attention

Two PPI variants "Classical" PPI: –Friston et al. 1997, NeuroImage –depends on factorial design –in the GLM, physiological time series replaces one experimental factor –physio-physiological interactions: two experimental factors are replaced by physiological time series Alternative PPI: –Macaluso et al. 2000, Science –interaction term is added to an existing GLM –can be used with any design

Is the red letter left or right from the midline of the word? group analysis (random effects), n=16, p<0.05 corrected analysis with SPM2 group analysis (random effects), n=16, p<0.05 corrected analysis with SPM2 Task-driven lateralisation letter decisions > spatial decisions time Does the word contain the letter A or not? spatial decisions > letter decisions Stephan et al. 2003, Science

Bilateral ACC activation in both tasks – but asymmetric connectivity ! IPS IFG Left ACC  left inf. frontal gyrus (IFG): increase during letter decisions. Right ACC  right IPS: increase during spatial decisions. left ACC (-6, 16, 42) right ACC (8, 16, 48) spatial vs letter decisions letter vs spatial decisions group analysis random effects (n=15) p<0.05, corrected (SVC) Stephan et al. 2003, Science

PPI single-subject example b VS = b L =0.63 Signal in left ACC Signal in left IFG b L = Signal in right ant. IPS Signal in right ACC b VS =0.50 Left ACC signal plotted against left IFG spatial decisions letter decisions spatial decisions Right ACC signal plotted against right IPS Stephan et al. 2003, Science

PPI for event-related fMRI requires deconvolution Gitelman et al. 2003, NeuroImage (A  HRF)  (B  HRF)   (A  B)  HRF

Pros & Cons of PPIs Pros: –given a single source region, we can test for its context-dependent connectivity across the entire brain –easy to implement Cons: –very simplistic model: only allows to model contributions from a single area –ignores time-series properties of data –application to event-related data relies deconvolution procedure (Gitelman et al. 2003, NeuroImage) –operates at the level of BOLD time series sometimes very useful, but limited causal interpretability; in most cases, we need more powerful models

Overview Brain connectivity: types & definitions –anatomical connectivity –functional connectivity –effective connectivity Psycho-physiological interactions (PPI) Dynamic causal models (DCMs) –DCM for fMRI: Neural and hemodynamic levels –Parameter estimation & inference Applications of DCM to fMRI data –Design of experiments and models –Some empirical examples and simulations

Dynamic causal modelling (DCM) DCM framework was introduced in 2003 for fMRI by Karl Friston, Lee Harrison and Will Penny (NeuroImage 19: ) part of the SPM software package currently more than 100 published papers on DCM

Neural state equation: Electromagnetic forward model: neural activity  EEG MEG LFP Dynamic Causal Modeling (DCM) simple neuronal model complicated forward model complicated neuronal model simple forward model fMRI EEG/MEG inputs Hemodynamic forward model: neural activity  BOLD Stephan & Friston 2007, Handbook of Brain Connectivity

Invert model Make inferences Define likelihood model Specify priors Neural dynamics Observer function Design experimental inputs Inference on model structure Inference on parameters Bayesian inversion

LG left LG right RVFLVF FG right FG left LG = lingual gyrus FG = fusiform gyrus Visual input in the - left (LVF) - right (RVF) visual field. x1x1 x2x2 x4x4 x3x3 u2u2 u1u1 Example: a linear system of dynamics in visual cortex

LG = lingual gyrus FG = fusiform gyrus Visual input in the - left (LVF) - right (RVF) visual field. state changes effective connectivity external inputs system state input parameters LG left LG right RVFLVF FG right FG left x1x1 x2x2 x4x4 x3x3 u2u2 u1u1

Extension: bilinear dynamic system LG left LG right RVFLVF FG right FG left x1x1 x2x2 x4x4 x3x3 u2u2 u1u1 CONTEXT u3u3

endogenous connectivity direct inputs modulation of connectivity Neural state equation hemodynamic model λ x y integration BOLD yy y activity x 1 (t) activity x 2 (t) activity x 3 (t) neuronal states t driving input u 1 (t) modulatory input u 2 (t) t Stephan & Friston (2007), Handbook of Brain Connectivity   

Bilinear DCM Bilinear state equation: driving input modulation Two-dimensional Taylor series (around x 0 =0, u 0 =0):

- x2x2 stimuli u 1 context u 2 x1x u 1 Z 1 u 2 Z 2 Example: context-dependent decay u1u1 u2u2 x2x2 x1x1 Penny, Stephan, Mechelli, Friston NeuroImage (2004)

DCM parameters = rate constants The coupling parameter a thus describes the speed of the exponential change in x(t) Integration of a first-order linear differential equation gives an exponential function: Coupling parameter a is inversely proportional to the half life  of z(t):

The problem of hemodynamic convolution Goebel et al. 2003, Magn. Res. Med.

Hemodynamic forward models are important for connectivity analyses of fMRI data David et al. 2008, PLoS Biol. Granger causality DCM

stimulus functions u t neural state equation hemodynamic state equations Balloon model BOLD signal change equation important for model fitting, but of no interest for statistical inference 6 hemodynamic parameters: Computed separately for each area (like the neural parameters)  region-specific HRFs! The hemodynamic model in DCM Friston et al. 2000, NeuroImage Stephan et al. 2007, NeuroImage

stimulus functions u t neural state equation hemodynamic state equations Balloon model BOLD signal change equation The hemodynamic model in DCM Stephan et al. 2007, NeuroImage

A B C hh ε How interdependent are neural and hemodynamic parameter estimates? Stephan et al. 2007, NeuroImage

Bayesian statistics posterior  likelihood ∙ prior Bayes theorem allows one to formally incorporate prior knowledge into computing statistical probabilities. In DCM: empirical, principled & shrinkage priors. The “posterior” probability of the parameters given the data is an optimal combination of prior knowledge and new data, weighted by their relative precision. new data prior knowledge

stimulus function u modelled BOLD response observation model hidden states state equation parameters Combining the neural and hemodynamic states gives the complete forward model. An observation model includes measurement error e and confounds X (e.g. drift). Bayesian parameter estimation by means of a Levenberg-Marquardt gradient ascent, embedded into an EM algorithm. Result: Gaussian a posteriori parameter distributions, characterised by mean η θ|y and covariance C θ|y. Overview: parameter estimation η θ|y neural state equation

Gaussian assumptions about the posterior distributions of the parameters Use of the cumulative normal distribution to test the probability that a certain parameter (or contrast of parameters c T η θ|y ) is above a chosen threshold γ: By default, γ is chosen as zero ("does the effect exist?"). Inference about DCM parameters: Bayesian single-subject analysis

Bayesian single subject inference LG left LG right RVF stim. LVF stim. FG right FG left LD|RVF LD|LVF LD 0.34       0.14 Contrast: Modulation LG right  LG links by LD|LVF vs. modulation LG left  LG right by LD|RVF p(c T  >0|y) = 98.7% Stephan et al. 2005, Ann. N.Y. Acad. Sci.

Likelihood distributions from different subjects are independent  one can use the posterior from one subject as the prior for the next Under Gaussian assumptions this is easy to compute: group posterior covariance individual posterior covariances group posterior mean individual posterior covariances and means “Today’s posterior is tomorrow’s prior” Inference about DCM parameters: Bayesian fixed-effects group analysis

Inference about DCM parameters: group analysis (classical) In analogy to “random effects” analyses in SPM, 2 nd level analyses can be applied to DCM parameters: Separate fitting of identical models for each subject Selection of bilinear parameters of interest one-sample t-test: parameter > 0 ? paired t-test: parameter 1 > parameter 2 ? rmANOVA: e.g. in case of multiple sessions per subject

Overview Brain connectivity: types & definitions –anatomical connectivity –functional connectivity –effective connectivity Psycho-physiological interactions (PPI) Dynamic causal models (DCMs) –DCM for fMRI: Neural and hemodynamic levels –Parameter estimation & inference Applications of DCM to fMRI data –Design of experiments and models –Some empirical examples and simulations

Any design that is good for a GLM of fMRI data. What type of design is good for DCM?

GLM vs. DCM DCM tries to model the same phenomena as a GLM, just in a different way: It is a model, based on connectivity and its modulation, for explaining experimentally controlled variance in local responses. No activation detected by a GLM → inclusion of this region in a DCM is useless! Stephan 2004, J. Anat.

Multifactorial design: explaining interactions with DCM Task factor Task A Task B Stim 1 Stim 2 Stimulus factor T A /S 1 T B /S 1 T A /S 2 T B /S 2 X1X1 X2X2 Stim2/ Task A Stim1/ Task A Stim 1/ Task B Stim 2/ Task B GLM X1X1 X2X2 Stim2 Stim1 Task ATask B DCM Let’s assume that an SPM analysis shows a main effect of stimulus in X 1 and a stimulus  task interaction in X 2. How do we model this using DCM?

Stim 1 Task A Stim 2 Task A Stim 1 Task B Stim 2 Task B Simulated data X1X1 X2X2 +++ X1X1 X2X2 Stimulus 2 Stimulus 1 Task ATask B –– Stephan et al. 2007, J. Biosci.

Stim 1 Task A Stim 2 Task A Stim 1 Task B Stim 2 Task B plus added noise (SNR=1) X1X1 X2X2

Example studies of DCM for fMRI DCM now an established tool for fMRI & M/EEG analysis >140 studies published combinations of DCM with computational models

Is the red letter left or right from the midline of the word? group analysis (random effects), n=16, p<0.05 corrected analysis with SPM2 group analysis (random effects), n=16, p<0.05 corrected analysis with SPM2 Task-driven lateralisation letter decisions > spatial decisions time Does the word contain the letter A or not? spatial decisions > letter decisions Stephan et al. 2003, Science

Theories on inter-hemispheric integration during lateralised tasks Information transfer (for left-lateralised task) Inhibition/CompetitionHemispheric recruitment LVFRVF T T T T + − − T T + + Predictions: modulation by task conditional on visual field asymmetric connection strengths Predictions: modulation by task only negative & symmetric connection strengths Predictions: modulation by task only positive & symmetric connection strengths  |LVF |RVF

LG left LG right FG right FG left RVFLVF B A B cond B ind LD VF LDB ind B cond intra inter 16 models LG left LG right FG right FG left LD RVF LVF LG left LG right RVF stim. LVF stim. FG right FG left LD LD,RVF LD|RVF LD LD,LVF LD|LVF VF LD B ind B cond LD RVF LVF LD|RVF LD|LVF VFLDB ind B cond D C

LG left LG right RVF stim. LVF stim. FG right FG left LD|RVF LD|LVF LD 0.25       0.05 Left lingual gyrus (LG) -12,-64,-4 Left fusiform gyrus (FG) -44,-52,-18 Right fusiform gyrus (FG) 38,-52,-20 Right lingual gyrus (LG) 14,-68,-2 mean parameter estimates  SE (n=12) significant modulation (p<0.05, uncorrected) non-significant modulation significant modulation (p<0.05, Bonferroni-corrected) LD>SD masked incl. with RVF>LVF p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) LD>SD, p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) p<0.01 uncorrected LD>SD masked incl. with LVF>RVF p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) Ventral stream & letter decisions Stephan et al. 2007, J. Neurosci.

MOG left LG left LG right RVF stim. LVF stim. FG right FG left LD|RVF LD|LVF LD 0.20       0.03 MOG right 0.00     0.01 Ventral stream & letter decisions LD>SD, p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) Left MOG -38,-90,-4 mean parameter estimates  SE (n=12) significant modulation (p<0.05, uncorrected) non-significant significant modulation (p<0.05, corrected) Left FG -44,-52,-18 Right MOG -38,-94,0 p<0.01 uncorrected Left LG -12,-70,-6 Left LG -14,-68,-2 LD>SD masked incl. with RVF>LVF p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) LD>SD masked incl. with LVF>RVF p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) Right FG 38,-52,-20 Stephan et al. 2007, J. Neurosci.

Asymmetric modulation of LG callosal connections is consistent across subjects Stephan et al. 2007, J. Neurosci.

Thank you