Applications of Mössbauer Spectroscopy at WITS and ISOLDE/CERN by Professor Deena Naidoo Wits-NECSA Workshop 09-10 September 2015.

Slides:



Advertisements
Similar presentations
169 Tm Mössbauer Spectroscopy J.M. Cadogan Department of Physics and Astronomy University of Manitoba Winnipeg, Manitoba, R3T 2N2 Canada
Advertisements

Portuguese groups at ISOLDE - CERN
When an nucleus releases the transition energy Q (say 14.4 keV) in a  -decay, the  does not carry the full 14.4 keV. Conservation of momentum requires.
IAEA CRP: Ion Beam Modification of Insulators RCM, Dec , 2007, FNRC, Uni. Chiang Mai, Thailand Study of the formation of ferro-, para- and superpara-
Microelectronics Processing
The Work Being Done at the Ion Beam Laboratory at Texas A&M University Van D. Willey Columbia High School Under the Direction of Lin Shao Assistant Professor.
6-1 RFSS: Lecture 6 Gamma Decay Part 2 Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition.
ALTO Laser Ion Source Ruohong Li, Serge Franchoo, Christophe Lau LA 3 NET Feb 22, 2013.
Corey Thompson Technique Presentation 03/21/2011
Chapter 8 Ion Implantation Instructor: Prof. Masoud Agah
ECE/ChE 4752: Microelectronics Processing Laboratory
Mossbauer Spectroscopy
Mössbauer spectroscopy References: J.P. Adloff, R. Guillaumont: Fundamentals of Radiochemistry, CRC Press, Boca Raton, 1993.
Chapter 8 Ion Implantation
Centre de Toulouse Radiation interaction with matter 1.
57 Mn Mössbauer collaboration at ISOLDE/CERN Emission Mössbauer spectroscopy of advanced materials for opto- and nano- electronics Spokepersons: Haraldur.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Ion Beam Analysis Dolly Langa Physics Department, University of Pretoria, South Africa Blane Lomberg Physics Department, University of the Western Cape,
8 B at ISOLDE Jochen Ballof | ISOLDE GUI Meeting Investigate the structure of 8B, which is expected to be proton halo in ground state, reaction.
Alexandr A. Ezhevskii *, Andrey V. Soukhorukov *, Davud V. Guseinov *, Sergey A. Popkov *, Anatoliy V. Gusev †, Vladimir A. Gavva † 1 Department of Physics,
MATERIALS PHYSICS RESEARCH PHYSICS RESEARCHINSTITUTE WITS UNIVERSITY.
Ion implantation doping of perovskites and related oxides Ulrich Wahl Instituto Tecnológico e Nuclear (ITN), Sacavém, Portugal Collaborators: João Guilherme.
Post Anneal Solid State Regrowth
Ion Implantation and Ion Beam Analysis of Silicon Carbide Zsolt ZOLNAI MTA MFA Research Institute for Technical Physics and Materials Science Budapest,
Spectroscopy of the low lying states of the neutron rich Iodine nucleus ( 134 I ) T. Bhattacharjee 1, S.K. Das 2, D. Banerjee 2, A. Saha 1, P. Das 1, S.
Plasma diagnostics using spectroscopic techniques
High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,
SILICON DETECTORS PART I Characteristics on semiconductors.
Low Temperature Characteristics of ZnO Photoluminescence Spectra Matthew Xia Columbia University Advisor: Dr. Karl Johnston.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #4. Ion Implantation  Introduction  Ion Implantation Process  Advantages Compared to Diffusion  Disadvantages.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
Direct identification of interstitial Mn in Ga 1-x Mn x As and evidence of its high thermal stability Lino Pereira 1, 2, 3 U. Wahl 2, J. G. Correia 2,,
UNIVERSITÄT DES SAARLANDES 1 Introduction to solid state physics at ISOLDE Th. Wichert (Universität des Saarlandes) Nuclear Physics & Astrophysics at CERN.
Burnaby - Dublin - Freiberg – Manchester – Saarbrücken - ISOLDE Collaboration Spokesperson: M. Deicher Contact person: K. Johnston.
Magnetic and structural properties of manganese doped (Al,Ga)N studied with Emission Mössbauer Spectroscopy Spokespersons: Alberta Bonanni Haraldur Páll.
SOLID STATE ISOLDE 40èmes Journées des Actinides
Elisa Rapisarda, CERN, PH Division
Donor-Acceptor Complexes in ZnO
Mineral Spectroscopy Visible Infrared Raman Mössbauer NMR.
PAC study of the magnetic and structural first-order phase transition in MnAs J. N. Gonçalves 1 V. S. Amaral 1, J. G. Correia 2, A. M. L. Lopes 3 H. Haas.
Karolina Danuta Pągowska
LIST status and outlook Sven Richter for the LIST-, RILIS- and Target-Collaborations 21 st of August 2013.
New emission Mössbauer spectroscopy studies at ISOLDE in 2015 Haraldur Páll Gunnlaugsson, Torben E. Mølholt, Karl Johnston, Juliana Schell, The Mössbauer.
1 Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Sacavém, Portugal 2 Instituut voor Kern- en Stralingsfysica.
Lattice location studies of the “anti-site” impurities As and Sb in ZnO and GaN Motivation 73 As in ZnO 73 As in GaN 124 Sb in GaN Conclusions U. Wahl.
Laser spectroscopy and beta-NMR for nuclear physics and applications Magdalena Kowalska CERN, PH-Dept Laser spectroscopy setups at ISOLDE Example – COLLAPS.
Fighting f-factors and implantation damage in emission Mössbauer spectroscopy Haraldur Páll Gunnlaugsson* The Mössbauer collaboration at ISOLDE CERN The.
Overview of Tandem Accelerator Facility and related R&D Work at NCP Ishaq Ahmad
Hiden Compact SIMS Mass Spectrometry in solid material.
1) Instituto Tecnológico e Nuclear, Sacavém, Portugal 2) Centro de Física Nuclear da Universidade de Lisboa, Portugal 3) II. Physikalisches Institut, Universität.
Boron and Phosphorus Implantation Induced Electrically Active Defects in p-type Silicon Jayantha Senawiratne 1,a, Jeffery S. Cites 1, James G. Couillard.
1 WORKSHOP AND USERS February 2007 Lattice site location of implanted Fe in SrTiO 3 and lattice damage recovery studies A. C. Marques 1,4 *, U. Wahl 1,2,
Physics around ISOLDE K. Riisager on behalf on Danish ISOLDE users RECFA meeting, Copenhagen, May
Emission Mössbauer spectroscopy of advanced materials for opto- and nano-electronics Spokepersons: Haraldur Páll Gunnlaugsson Sveinn Ólafsson Contact person:
Mossbauer spectroscopy
Ion Implantation CEC, Inha University Chi-Ok Hwang.
Solid State and bio-physics at ISOLDE
Emission Channeling with Short-Lived Isotopes: lattice location of impurities in semiconductors and oxides L.M.C. Pereira1 , L. Amorim1, J.P. Araújo4,
P. Alexeev1, H. -C. Wille1, O. Leupold1, I. Sergueev1, M
Mӧssbauer study of Y3Al5O12 (YAG), Y3Fe5O12 (YIG) and Gd3Ga5O12 (GGG) single crystal garnets following dilute implantation of 57Mn+. P. B. Krastev,
Emission Mössbauer Spectroscopy at ISOLDE/CERN
First results from IS468 and further investigation of in-trap decay of 62Mn First results from 2008 ; Problems and questions ; Further investigations ;
Mössbauer studies of dilute magnetic semiconductors
Laser assisted decay spectroscopy at the cris beam line at
Chapter 8 Ion Implantation
آزمايشگاه فناوري نانو کفا آزمايشگاه فناوري نانو کفا
Russian Research Center “ Kurchatov Institute”
Study of the resonance states in 27P by using
Z. Leśnikowski, E. Przelazły, K. Dziedzic-Kocurek, J. Stanek
Ion-beam, photon and hyperfine methods in nano-structured materials
Presentation transcript:

Applications of Mössbauer Spectroscopy at WITS and ISOLDE/CERN by Professor Deena Naidoo Wits-NECSA Workshop September 2015

Outline of Presentation Mössbauer Isotopes/Approaches Measurables WITS Mössbauer Facility and applications Mössbauer at ISOLDE and applications Local and International Collaborations WITS-NECSA Workshop, South Africa, September 2015

Mössbauer Isotopes WITS-NECSA Workshop, South Africa, September 2015

57 Fe Mössbauer Spectroscopy 4 WITS-NECSA Workshop, South Africa, September 2015

Comparison of different MS Approaches Stable 57 Fe (transmission) 57* Fe 57 Co 57 Mn* AccessibleDirect implantation behaviour AccessibleAnnealing, recoil High doses -> interacting Fe atoms. Overlapping damage cascades. Needs large facilities. Low intensity. Spectra masked by implantation damage. Long lifetime. Surface diffusion. Needs large facilities. Competitive proposals. Mössbauer Approaches WITS-NECSA Workshop, South Africa, September 2015

Hyperfine Interactions and Measurables Electric Monopole Interaction Valence/spin state => Position of resonance lines. Electric Quadrupole Interaction Site symmetry => Splitting of lines. WITS-NECSA Workshop, South Africa, September 2015

Hyperfine Interactions and Measurables Magnetic interactions Zeeman splitting into 6-line pattern. Other Measurables  Spin relaxation rates (sextet broadening).  Diffusion on a atomic scale (line broadening).  Interaction with defects (implantation damage/lattice sites).  Debye temperature (resonance area/intensity). WITS-NECSA Workshop, South Africa, September 2015

Be Window Mössbauer WITS WITS-NECSA Workshop, South Africa, September 2015 Transmission MS CEMS Some Electronics Some Research Samples Fly-ash Multiferroics Milled carbides with binders Cemented carbides Catalysts Carbon nanomaterials Rock bearing samples

Be Window Apllications: WITS – Fly Ash WITS-NECSA Workshop, South Africa, September 2015

Be Window Applications: WITS – Cemented Carbides WITS-NECSA Workshop, South Africa, September 2015

ISOLDE: Beam Production Proton induced fission in UC 2 target  Neutron rich isotopes Laser  Selective ionisation, Mn Electromagnet  Mass selection ( 57 Mn ) 1.4 Acceleration to keV WITS-NECSA Workshop, South Africa, September 2015

On-line emission Mössbauer spectroscopy 57 Mn decay to the 57 Fe probe: 57 Fe 57* Fe (τ = 140 ns) I = 3/2 I = 1/2 57 Co (T ½ = 271 days) 57 Mn (T ½ = 85.4 sec.) EC -- Off-line γ 14.4 keV Mössbauer transition Ion-implantation of dilute dopants into sample Resonance detector v WITS-NECSA Workshop, South Africa, September 2015

Be Window Beamline ( 57 Mn + ions) Implantation Chamber Mössbauer Drive Resonance Detector To Electronics and data acquisition Counting Gas ISOLDE, CERN WITS-NECSA Workshop, South Africa, September 2015

Why Radioactive Beams (RIB)? ISOLDE On-Line Isotope Mass Separator No problems with beam contamination. Beam intensity (~2× Mn/s).. Total dose of ≤ Mn/cm Mn  57 m Fe ( T ½ = 1.5 min.)  E R  ~ 40 eV. Study impurities <10 -5 at%). Study impurities (~10 16 atoms/cm 3 <10 -5 at%). High statistics spectrum (5 – 10 min). Isothermal annealing studies on a timescale of minutes. Dose dependence. Measurements at different emission angles. External magnetic field ( B ext ≤ 0.6 T). Quenching WITS-NECSA Workshop, South Africa, September 2015 Some Research Samples Diamond, SiC, GaN, AlN, InN, Si, Ge, Al 2 O 3, MgO, ZnO (+ nanowires), TiO 2, SnO 2, GaAs, InP, GaP, FeV multilayers, Heusler Alloys, Topological insulators,

Si Mn Upon annealing of implantation damage (T > 450 K, t = 90 sec) Mn enters predominantly substitutional sites or near- substitutional sites WITS-NECSA Workshop, South Africa, September 2015

Si Mn 57* Fe 57 Mn (T ½ = 1.5 min.) 57* Fe 14.4 keV (  = 140 ns)  - = 40 eV 57 Fe  WITS-NECSA Workshop, South Africa, September 2015

Applications: ISOLDE - Silicon WITS-NECSA Workshop, South Africa, September 2015

Emission Channeling in ISOLDE Four fractions: Random fraction (R) => disordered environment. Ideal substitutional site (S) Near substitutional site (near-S) Near interstitial site (near-T) WITS-NECSA Workshop, South Africa, September 2015

Applications: ISOLDE - ZnO B ext = 0 T: Complex magnetic sextet structure. Magnetic structure originate from Kramers doublets. NO ordered magnetism. Slow Relaxing Paramagnetism. WITS-NECSA Workshop, South Africa, September 2015

Some Collaborators at CERN South Africa: D. Naidoo, K. Bharuth-Ram, H. Masenda and M. Ncube acknowledges support from South African National Research Foundation and the Department of Science and Technology. Denmark: H.P. Gunnlaugsson, G. Weyer and M.B. Madsen. acknowledges support from MIUR through the FIRB Project RBAP115AYN “Oxides at the nanoscale: multifunctionality Italy: R. Mantovan and M. Fanciulli acknowledges support from MIUR through the FIRB Project RBAP115AYN “Oxides at the nanoscale: multifunctionality and applications”. Iceland: T.E. Mølholt, S. Ólafsson and acknowledges support H. P. Gíslason acknowledges support from the Icelandic Research Fund. CERN-ISOLDE: K. Johnston Belgium: G. Langouche Germany: R. Sielemann WITS-NECSA Workshop, South Africa, September 2015

Local Collaboration  Professor D. Naidoo (Group Leader)  Dr H. Masenda  Undergraduate Students (Physics Majors III and Materials Science III)  Postgraduate Students (Honours, MSc and PhD)  School of Physics: MPRI Members  Modelling Group DST/NRF CoE in Strong Materials  School of Chemistry  School of Geosciences  University of Johannesburg  Durban University of Technology (DUT)  MINTEK/ANGLO/CSIR/SASOL/ELEMENT 6  NECSA – future? WITS-NECSA Workshop, South Africa, September 2015