Unifying neutron stars Sergei Popov (SAI MSU) in collaboration with: Andrei Igoshev (SPbSU), and Roberto Turolla (Univ. Padova)

Slides:



Advertisements
Similar presentations
AGN Feedback at the Parsec Scale Feng Yuan Shanghai Astronomical Observatory, CAS with: F. G. Xie (SHAO) J. P. Ostriker (Princeton University) M. Li (SHAO)
Advertisements

Isolated Neutron Stars: From the Surface to the Interiors.
Proton Cyclotron Lines in Thermal Magnetar Spectra S. Zane, R. Turolla, L. Stella and A. Treves Mullard Space Science Laboratory UCL, University of Padova,
Be born slow or die fast Spin evolution of neutron stars with alignment and counteralignment S. Eliseeva, S. Popov, V. Beskin astro-ph/
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae S.P. Reynolds et al. Martin, Tseng Chao Hsiung 2013/12/18.
Neutron Stars 2: Phenomenology Andreas Reisenegger Depto. de Astronomía y Astrofísica Pontificia Universidad Católica de Chile Chandra x-ray images of.
Evolution of isolated neutron stars: young coolers and old accretors Sergei Popov (SAI)
Magnetars origin and progenitors with enhanced rotation S.B. Popov, M.E. Prokhorov (Sternberg Astronomical Institute) (astro-ph/ )
Radio-quiet Isolated Neutron Stars (RQINs) Jeng-Lwen, Chiu Institute of Astronomy, NTHU 2004/09/30.
Stephen C.-Y. Ng McGill University Jun 22, 2010HKU Fermi Workshop Neutron Star Zoo: radio pulsars, magnetars, RRATs, CCOs, and more Special thanks to Vicky.
Neutron stars. Lecture 1. Sergei Popov (SAI MSU).
Solar vicinity, close-by young isolated NSs, and tests of cooling curves Sergei Popov (Sternberg Astronomical Institute) Co-authors: H.Grigorian, R. Turolla,
Extensive population synthesis of neutron stars magnetic field decay and isolated accretors J.A. Pons, J.A. Miralles, P.A. Boldin, B. Posselt, MNRAS (2010)
Formation and evolution of magnetars Sergei Popov (SAI MSU) J.A. Pons, J.A. Miralles, P.A. Boldin, B. Posselt, MNRAS (2009) arXiv: A.Bogomazov,
Close-by young isolated NSs: A new test for cooling curves Sergei Popov (Sternberg Astronomical Institute) Co-authors: H.Grigorian, R. Turolla, D. Blaschke.
Likely continuous sources for detection by ITF C. Palomba Slides based on a paper appeared in MNRAS, 2005 Isolated neutron stars “Standard” EOS (no quark.
New Test for Cooling Curves Population Synthesis of Close-by Neutron Stars S.B. Popov 1, H. Grigorian 2, R. Turolla 3, D. Blaschke 4 1 Sternberg Astronomical.
Close-by young isolated NSs: A new test for cooling curves Sergei Popov (Sternberg Astronomical Institute) Co-authors: H.Grigorian, R. Turolla, D. Blaschke.
New adventures of Uncatchables Sergei Popov, Bettina Posselt (astro-ph/ and work in progress)
Two stories from the life of binaries: getting bigger and making magnetars Sergei Popov, Mikhail Prokhorov (SAI MSU) This week SAI celebrates its 175 anniversary.
X-ray Observations of Solitary Neutron Stars an adventure to understand the structure and evolution of neutron stars 國立清華大學物理系與天文所 張祥光.
Evolution with decaying magnetic field. 2 Magnetic field decay Magnetic fields of NSs are expected to decay due to decay of currents which support them.
Spin evolution of NSs. 2 Hard life of neutron stars There are about persons on Earth. How many do you know? There are about NSs in the Galaxy.
1 Soft gamma repeaters outside the Local group S.B. Popov, B.E. Stern (astro-ph/ ; astro-ph/ ) Physics of Neutron Stars– June 2005.
SGR activity in time Sergei Popov (SAI MSU) (HEA-2006, December 2006 Moscow, IKI)
Space Cowboys Odissey: Beyond the Gould Belt Sergei Popov, Bettina Posselt (co-authors: F. Haberl, R. Neuhauser, J. Truemper, R. Turolla) astro-ph/ ,
Thermal evolution of neutron stars. Evolution of neutron stars. I.: rotation + magnetic field Ejector → Propeller → Accretor → Georotator See the book.
Close-by young isolated neutron stars (and black holes) Sergey Popov (Sternberg Astronomical Institute)
Population synthesis of INSs. Population synthesis in astrophysics A population synthesis is a method of a direct modeling of relatively large populations.
Accreting isolated neutron stars. Magnetic rotator Observational appearances of NSs (if we are not speaking about cooling) are mainly determined by P,
1I Compstar meeting, Wroclaw 2008 Prospects of inferring dense matter properties from NS cooling: the magnetar masquerade the magnetar masquerade José.
Be born slow or die fast Spin evolution of neutron stars with alignment and counteralignment S. Eliseeva, S. Popov, V. Beskin astro-ph/
MODELING STATISTICAL PROPERTIES OF THE X-RAY EMISSION FROM AGED PULSAR WIND NEBULAE Rino Bandiera – INAF – Oss. Astrof. di Arcetri The Fast and the Furious,
Extensive population synthesis studies of isolated neutron stars with magnetic field decay Sergei Popov (SAI MSU) J.A. Pons, J.A. Miralles, P.A. Boldin,
Evolution with decaying and re-emerging magnetic field.
Spin evolution of NSs.
Close-by young isolated NSs: A new test for cooling curves Sergei Popov (Sternberg Astronomical Institute) Co-authors: H.Grigorian, R. Turolla, D. Blaschke.
Radio and X-Ray Properties of Magellanic Cloud Supernova Remnants John R. Dickel Univ. of Illinois with: D. Milne. R. Williams, V. McIntyre, J. Lazendic,
“GRAND UNIFICATION” in Neutron Stars Victoria Kaspi McGill University Montreal, Canada.
Magnetic Field Decay and Core Temperature of Magnetars, Normal and MS pulsars Shuang-Nan Zhang 张双南 1 Yi Xie 谢祎 2 1. Institute of High Energy Physics 2.
Population synthesis of isolated NSs and tests of cooling curves Sergei Popov (Sternberg Astronomical Institute) Co-authors: D. Blaschke, H.Grigorian,
Thermal evolution of neutron stars. Evolution of neutron stars. I.: rotation + magnetic field Ejector → Propeller → Accretor → Georotator See the book.
COOLING OF NEUTRON STARS D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Ladek Zdroj, February 2008, 1. Formulation of the Cooling.
Magnetic field evolution of neutron stars: linking magnetars and antimagnetars Sergei Popov (SAI MSU) (co-authors: A. Kaurov, A. Kaminker) PASA vol. 32,
New adventures of Uncatchables Sergei Popov SAI MSU (astro-ph/ and work in progress)
Lecture 2 Spin evolution of NSs Sergei Popov (SAI MSU) Dubna “Dense Matter In Heavy Ion Collisions and Astrophysics”, July 2008.
Neutron star masses: dwarfs, giants and neighbors Sergei Popov (SAI MSU) Collaborators: M. Prokhorov H. Grigorian D. Blaschke.
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
Observational Properties Of Pulsars N'Diaye Maxime L3-PS.
The Radio Evolution of the Galactic Center Magnetar Joseph Gelfand (NYUAD / CCPP) Scott Ransom (NRAO), Chryssa Kouveliotou (GWU), Mallory S.E. Roberts.
Lecture 1 Isolated Neutron Stars. Intro. Sergei Popov (SAI MSU) Dubna “Dense Matter In Heavy Ion Collisions and Astrophysics”, July 2008.
Accreting isolated neutron stars. Magnetic rotator Observational appearances of NSs (if we are not speaking about cooling) are mainly determined by P,
Binary Compact Object Inspiral: Rate Expectations Vicky Kalogera with Chunglee Kim Richard O’Shaughnessy Tassos Fragkos Physics & Astronomy Dept.
Lecture 5. Population synthesis of NSs Sergei Popov (SAI MSU)
Evolution with decaying and re-emerging magnetic field.
Predicting the BRAING INDEX OF INTERMITTENT AND NULLING PULSARS
Core Collapse Supernovae and Neutron Star Kicks
Isolated Neutron Stars for ART, eROSITA and LOBSTER
Evolution with decaying magnetic field
Spin evolution of NSs.
Magnetars Jared Filseth.
Evolution with decaying and re-emerging magnetic field
Great unification for neutron stars: The last element?
J.A. Pons, J.A. Miralles, P.A. Boldin, B. Posselt
Evolution with decaying and re-emerging magnetic field
Spin evolution of NSs.
Spin evolution of NSs.
Constraining the braking indices of magnetars
Isolated neutron stars
Young Isolated Neutron Stars: Observations and Evolution
Presentation transcript:

Unifying neutron stars Sergei Popov (SAI MSU) in collaboration with: Andrei Igoshev (SPbSU), and Roberto Turolla (Univ. Padova)

Diversity of young neutron stars Young isolated neutron stars can appear in many flavors: o Radio pulsars o Compact central X-ray sources in supernova remnants. o Anomalous X-ray pulsars o Soft gamma repeaters o The Magnificent Seven & Co. o Transient radio sources (RRATs) o …………………… A kind of “GRAND UNIFICATION” is necessary (Kaspi 2010) Kaplan

Three main ingredients: Aguilera et al. Field decay Bernal, Page, Lee Emerging magnetic field Pons et al. Toroidal magentic field

Evolution of PSRs with evolving field Pons, Vigano, Geppert 2012 Three stages: 1. n<=3 Standard + emerging field 2. n>3 Ohmic field decay 3. Oscillating and large n – Hall drift

Additional evidence for field decay Chashkina, Popov (2012) It is possible to use HMXBs to test models of field decay on time scale >1 Myr (Chashkina, Popov 2012). We use observations of Be/X-ray binaries in SMC to derive magnetic field estimates, and compare them with prediction of the Pons et al. model.

Evolution of CCOs and field distributions B PSRs+ Magnetars+ Close-by coolers CCOs B HMXBs Among young isolated NSs up to 1/3 can be related to CCOs. If they are anti-magnetars, then we can expect that 1/3 of NSs in HMXBs are also low-magnetized objects. They are expected to have short spin periods <1 sec. However, there are no such sources with such properties. Possible solution: emergence of magnetic field Chashkina, Popov 2012 Popov et al. MNRAS 2010 Halpern, Gotthelf (See discussion in )

Additional evidence for emerging field Yakovlev, Pethick 2004 Where are older hot CCOs? According to cooling studies they have to be bright till at least 10 5 years. Some PSRs with thermal emission for which additional heating was proposed can be descendants of CCOs with emerged field.

What else can we learn about field decay and/or emerging magnetic field studying properties of populations of different age and comparing them?

Sample of NSs+SNRs 30 pairs: PSR+SNR Popov, Turolla arXiv:

B vs. P 0 All presented estimates are made for standard assumptions: n=const=3. So, field is assumed to be constant, as well as the angle between spin and magnetic axis. Crosses – PSRs in SNRs (or PWN) with ages just consistent with spin-down ages. We assume that P 0 <0.1P Popov, Turolla

Checking gaussian P 0 =0.1 s; σ=0.1 s The data we have is not enough to derive the shape of the P 0 distribution. However, we can exclude very wide and very narrow distributions, and also we can check if some specific distributions are compatible with our results. Here we present a test for a gaussian distribution, which fits the data. Still, we believe that the fine tuning is premature with such data.

Wide initial spin period distribution Noutsos et al. Based on kinematic ages. Mean age – few million years. Note, that in Popov & Turolla (2012) only NSs in SNRs were used, i.e. the sample is much younger! Can it explain the difference?

Magnetic field decay and P 0 Igoshev, Popov MNRAS arXiv: One can suspect that magnetic field decay can influence the reconstruction of the initial spin period distribution. Exponential field decay with τ=5 Myrs. =0.3 s, σ P =0.15 s; =12.65, σ B =0.55 τ<10 7 yrs, 10 5 <t10 5 <t<10 7 yrs

Real vs. reconstructed P 0 How long reconstructed initial periods changed due to not taking into account the exponential field decay The amount of field decay necessary to explain this shift is in correspondence with the radio pulsar data (talk by Andrei Igoshev)

Another option: emerging field The problem is just with few (6) most long-period NSs. Is it possible to hide them when they are young, and make them visible at the age ~few million years? Yes! Emerging magnetic field!!! Then we probably need correlations between different initial parameters

Extensive population synthesis: M7, magnetars, PSRs M7 Magnetars PSRs Using one population it is difficult or impossible to find unique initial distribution for the magnetic field All three populations are compatible with a unique distribution. Popov, Pons et al. 2010

The “one second” problem Two types of sources are observed: Radio pulsars (P<1 sec) Magnificent Seven (P>1 sec) No close-by cooling NSs in the range ~-0.5 <log P< ~0.5

Conclusions Studies of the magnetic field distribution in HMXBs provide evidence in favour of decaying field and in favour of emerging field Absence of evolved hot CCO-like sources argues in favour of emerging magnetic field Comparison of the initial spin period distributions obtained for very young NSs (in SNR) and for older pulsars with known kinematic ages argues in favour of the field decay or/and emerging field We need more detailed population synthesis studies We need larger observational statistics