N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.

Slides:



Advertisements
Similar presentations
In this presentation you will:
Advertisements

TELESCOPE ANALOG CONTROL Martin Frericks, Frans Zwart.
University of Kansas EPS of KUTEsat Pathfinder Leon S. Searl April 5, 2006 AE256 Satellite Electrical Power Systems.
Applying Wireless / SI/O Architecture To NeSSI March 7, 2001 John Crawford VP, Business Development Crossbow Technology, Inc.
PV Watchdog Web-Enabled Photovoltaic System Monitor Art Barnes Austin Fisher Ryan Mann Josh Stone.
Aloha Proof Module Design Cabled Observatory Presentation School of Ocean and Earth Science and Technology February 2006.
STARLight PDR 3 Oct ‘01H.1 Miller STARLight Sensor Signal Processing Ryan Miller STARLight Electrical Engineer (734)
Major Modifications and System Modeling Use a Peltier cooler as an actuator instead of a power resistor. Relocate the ambient sensor further away from.
P07301 Summary Data Acquisition Module. Team Members.
Chapter 17 Microprocessor Fundamentals William Kleitz Digital Electronics with VHDL, Quartus® II Version Copyright ©2006 by Pearson Education, Inc. Upper.
Engineering 1040: Mechanisms & Electric Circuits Fall 2011 Introduction to Embedded Systems.
LSST Electronics Review – BNL, January LSST Electronics Review BNL January Monitoring and Configuration R. Van Berg Electronics.
Proposed US Contribution to the Wide Field Imager PSU MIT JHU.
Solar Probe Plus FIELDS ICU/FSW Peter R. Harvey Dorothy Gordon –ICU Will Rachelson – FSW Dec 1, 2012.
Final Version Wes Ousley Dan Nguyen May 13-17, 2002 Micro-Arcsecond Imaging Mission, Pathfinder (MAXIM-PF) Thermal.
DIGITAL COMPONENTS By Sohaib.
USAFA Department of Astronautics I n t e g r i t y - S e r v i c e - E x c e l l e n c e Astro 331 Data Handling—Intro Lesson 23 Spring 2005.
PACS IBDR 27/28 February 2002 PACS DEC/MEC1 Detectors & Mechanisms Controllers (DEC/MEC) J.-M. Gillis Centre Spatial de Liège (B)
ISUAL Sprite Imager Electronic Design Stewart Harris.
Selda HeavnerFIELDS iPDR – Antenna Electronics Board Solar Probe Plus FIELDS Instrument PDR Antenna Electronics Board Selda S. Heavner U.C. Berkeley
Electronics for PS and LHC transformers Grzegorz Kasprowicz Supervisor: David Belohrad AB-BDI-PI Technical student report.
ISUAL Spectrophotometer Electronics C. Ingraham. 2NCKU UCB Tohoku CDR 9 July, 2001 Spectrophotometer Electronics C. Ingraham SP Electronics Functions.
Input/OUTPUT [I/O Module structure].
ECE 477 DESIGN REVIEW TEAM 2  FALL 2011 Members: Bo Yuan, Yimin Xiao, Yang Yang, Jintao Zhang.
G D Electronics Infrastructure for advanced LIGO LSC Meeting, Boston, July 25, 2007 Daniel Sigg, LIGO Hanford Observatory.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n s t r u m e n t S y n t h e s i s a n d A n a l y s i s L a b o r a t o r y Earth Atmosphere.
P. Earle p1 November 16, 2001Electrical SNAP Electrical Design Estimates November 16, 2001 C. Paul Earle Super Nova/Acceleration Probe.
Seminar ON SMART SENSOR Submitted by : SUBIR KUMAR GHOSH Roll No. IN-14/04 Electrical & Instrumentation Deptt. B.E 7th Semester JORHAT ENGINEERING COLLEGE,
XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Dariusz Makowski, Technical University of Łódź LLRF review, DESY, 3-4 December 2007 Advanced.
TRIO-CINEMA 1 UCB, 2/08/2010 Instrument Interface Board Dorothy Gordon CINEMA - EE Team Space Sciences Laboratory University of California, Berkeley.
THEMIS Instrument CDR 1 UCB, April 19-20, 2004 Boom Electronics Board (BEB) Engineering Peer Review Apr. 20, 2004 Hilary Richard.
ATLAS ATLAS DCS B.Hallgren, CERN EP/ ATI PRR CERN 4 March the Embedded Local Monitor Board ELMB Design description of the Embedded Local Monitor.
C. Ingraham5-7 March 2001Data Processing Unit IFR1NCKU UCB Tohoku ISUAL Data Processing Unit (DPU) C. Ingraham.
John Moulton & Art Sibbach 5/19/08
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.
PACS IBDR 27/28 Feb 2002 Digital Processing Unit1/16 DPU PRESENTATION R.Orfei & S. Pezzuto CNR- IFSI.
SDR 7 Jun Associated Electronics Package (AEP) Curtis Ingraham.
AEP Mechanical and Power System H. Heetderks. CDR July, 2001NCKU UCB Tohoku AEP Mechanical and Power System H. Heetderks 2 AEP Mechanical Design System.
Advanced Hardware/Software Optimization Techniques for Application Specific MCSoC m Yumiko Kimezawa Supervised by Prof. Ben Abderazek Adapted Systems.
NameFIELDS iPDR – Subject Solar Probe Plus FIELDS Instrument PDR Antenna Electronics Box Selda S. Heavner U.C. Berkeley 1.
Assumptions: Cockcroft-Walton photomultiplier bases are the same for all ECAL sections Digital to analog converters are installed on the distribution boards.
Development and Test of Simultaneous Power Analysis System for Three-Phase and Four-Wire Power System Hun Oh 1, In Ho Ryu 2 and Jeong-Chay Jeon 3 * 1 Department.
TPC electronics Status, Plans, Needs Marcus Larwill April
Large field of solar arrays that need to be facing the sun Close to a city that creates acid rain and other damaging forms of precipitation Create a centralized.
TRIO-CINEMA 1 UCB, 2/08/2010 LVPS & Switching Dave Curtis UCB/SSL Space Sciences Laboratory University of California, Berkeley.
GoetzPre-PDR Peer Review October 2013 FIELDS Time Domain Sampler Peer Review Keith Goetz University of Minnesota 1.
HarveyFIELDS iCDR – Flight Software Solar Probe Plus FIELDS DCB Flight Software Design Peter Harvey University of California 1.
PACS IIDR 01/02 Mar 2001 PACS Grounding Scheme and EMC1 Grounding Scheme and EMC Matthias Rumitz, MPE.
GLAST Large Area Telescope LAT Flight Software System Checkout TRR FSW Overview Sergio Maldonado FSW Test Team Lead Stanford Linear Accelerator Center.
ISUAL System Design H. Heetderks. PDR 31 August 2000NCKU UCB Tohoku ISUAL System Design H. Heetderks 2 ISUAL Operations Overview.
CONTENTS Objective Software &Hardware requirements Block diagram Mems technology Implementation Applications &Advantages Future scope Conclusion References.
Vladimir Zhulanov for BelleII ECL group Budker INP, Novosibirsk INSTR2014, Novosibirsk 2014/02/28 1.
1 Summary Lecture: Part 1 Sensor Readout Electronics and Data Conversion Discovering Sensor Networks: Applications in Structural Health Monitoring.
Martin van Beuzekom, Jan Buytaert, Lars Eklund Opto & Power Board (OPB) Summary of the functionality of the opto & power board.
C osmic R Ay T elescope for the E ffects of R adiation 27 June 2005 Digital Engineering Digital Sub-System Bob Goeke.
Components of Mechatronic Systems AUE 425 Week 2 Kerem ALTUN October 3, 2016.
Status of the DSP/ASPOC EM
Particles and Fields Package (PFP) SWEA Pre-CDR Peer Review
FGM CDR FGM Electronics (FGE) Ronald Kroth MAGSON GmbH Berlin Germany.
CRaTER Pre-Environmental Review (I-PER) Engineering Requirements/Design Updates Bob Goeke September 10-11, 2007.
ISUAL Associated Electronics Package
GLAST Large Area Telescope:
‘SONAR’ using Arduino & ultrasonic distance sensor
Digital Sub-System Bob Goeke.
AQT90 FLEX Service Training
Universiti Malaysia Perlis
Computers Chapter 17 Lesson 4.
CRaTER Pre-Environmental Review (I-PER) Engineering Requirements/Design Updates Bob Goeke September 10-11, 2008.
Command and Data Handling
Automotive Technology Principles, Diagnosis, and Service
Presentation transcript:

N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y MAXIM Periscope Module Electrical Design Estimates C. Paul Earle 25 April 2003

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Electrical Design Estimates, p2 Final Version 25 April 2003 MAXIM Periscope Module Design Notes & Assumptions Unregulated + 28V Supply from the S/C 1 pps timing signal + S/C time from the S/C MIL-STD-1553 Command & Data Handling Interface Requirements Provide regulated power to Sensors, Actuators, & Circuit Boards Time-Tag Sensor Data (ie. tip/tilt/piston) based on 1pps signal from S/C Implement Thermal Control & Monitoring Collect Housekeeping Data – Temperatures, Voltages, Currents Design Assumptions

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Electrical Design Estimates, p3 Final Version 25 April 2003 MAXIM Periscope Module 1pps (1Hz) Instrument Electronics RAM 1553 I/F S/C C&DH Functional Block Diagram Figure V Survival Power Periscope (1 of 4) Actuators (4) H/K & Thermal Control Sensors: Encoders (3) Tip/tilt (2) Mechanism Drive & Control DC/DC Converter InstrumentC PU SpacecraftInstrument +28V Supply Aperture Motor (1) Heaters & Temp Sensors

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Electrical Design Estimates, p4 Final Version 25 April 2003 MAXIM Periscope Module Instrument Architecture Power Board H/K & Therm Board BUS CPU Board (+RAM) Mech Drive Board Actuators 1pps 1553 I/F +28V (Unregulated) Address & Data Bus Regulated Power Figure 2. Position Sensors Sensor Board

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Electrical Design Estimates, p5 Final Version 25 April 2003 MAXIM Periscope Module Sensor Readout Board Pre- Amps (8) Readout Control FPGA To RAM To/From CPU Buffer (FIFO) 13:1 MUX (digital) 8:1 MUX (Analog) A/D, MUXs, FIFO Control (1 Sensor Readout Board per Free Flyer) Figure 3. A/D (1) Linear Encoders (12) 8 Tip/Tilt Sensors (8) 12:1 MUX (digital) 12

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Electrical Design Estimates, p6 Final Version 25 April 2003 MAXIM Periscope Module Power Board Load Calculations: CPU Board = 6 Watts H/K & Thermal Board = 4 Watts Sensor Board = 4 Watts Mech Drive Board = 4 Watts Aperture Motors = 1 Watts each (no simultaneous operation) Actuators = 1 Watts each (no simultaneous operation) Total Conditioned Power = 20 Watts Assume Converter Efficiency of ~ 70% => Power Board Dissipation = (20/0.7) – 20 = 8.6 Watts

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Electrical Design Estimates, p7 Final Version 25 April 2003 MAXIM Periscope Module Electronics Box Power Summary Main Electronics BoxAvg. Power CPU Board6 Watts H/K & Thermal Control Board4 Watts Mechanism Drive Board4 Watts Sensor Readout Board4 Watts Power Supply Board 8.6 Watts Box Total:26.6 Watts

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Electrical Design Estimates, p8 Final Version 25 April 2003 MAXIM Periscope Module Figure 4. Main Electronics Box Summary CPU Board (6W) Total: ~ 26.6 Watts (avg.) Power Board (8.6W) H/K & Thermal (4W) 7 in (17.5 cm) 10 in (25 cm) 8 in (20 cm) 6 in (15 cm) Estimated Mass ~ 7 Kg Estimated Power ~ 26.6 Watts (Avg.) Estimated Size ~ (25 x 15 x 17.5) cm. Main Electronics Box Sensor Board (4W) 6 in (15 cm) Mech Drive Board (4W)

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Electrical Design Estimates, p9 Final Version 25 April 2003 MAXIM Periscope Module Instrument Power Summary Spacecraft Power Bus Requirement End ItemsAvg. Power 1 Main Electronics Box 26.6 Watts 1 Watt each 1 Watts Drive 1 Watt each 1 Watt Heaters 25 Watts Instrument Total: 53.6 Watts

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Electrical Design Estimates, p10 Final Version 25 April 2003 MAXIM Periscope Module Main Electronics Box ~ $4.3M (Includes Design, Parts, Fabrication, Test, & ETU) Cost Estimate

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Electrical Design Estimates, p11 Final Version 25 April 2003 MAXIM Periscope Module Low risk design. Essentially design re-use for each of the circuit boards. No science data on the Free-Flyers and the Hub spacecraft. All Sensor Data and Housekeeping Data is passed to the spacecraft via the 1553 bus. Design could possibly be further optimized by moving CPU functions to the spacecraft side of the bus and utilize the FPGA for the instrument control functions. Packaging could possibly be reduced by combining the actuator drive board with the sensor readout board at the expense of drive circuitry redundancy. Example: A single drive circuit (with one backup) could be multiplexed to each of the actuators given non- simultaneous operation. Conclusion

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Electrical Design Estimates, p12 Final Version 25 April 2003 MAXIM Periscope Module Backup Slides (Electrical Design Estimates)

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Electrical Design Estimates, p13 Final Version 25 April 2003 MAXIM Periscope Module Processor Board CPU (RAD 6000) Startup ROM EEPROM Memory (Thermal control logic) Ethernet I/F 1553 I/F RAM Time Stamp Function S/C 1pps S/W Dev. Figure 5.

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Electrical Design Estimates, p14 Final Version 25 April 2003 MAXIM Periscope Module Drive Cmd From Processor Driver Amp I+I motor Open/close detection HK Mux + - To H/K Board Actuator Current Actuator Voltage Figure 6. Mechanism Drive Circuit Aperture door

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Electrical Design Estimates, p15 Final Version 25 April 2003 MAXIM Periscope Module Thermal Control circuit Figure 7. DAC HK Mux V Ref I Source I+I+ I+I+ V+V+ Heater Current Heater Voltage T sensor Voltage T sensor Current + - From Processor To Central HK Heater T sensor (1 of n circuits shown) From Processor

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Electrical Design Estimates, p16 Final Version 25 April 2003 MAXIM Periscope Module Mux 16-ch AD A/D Conv. AD 1672 To Controller Board Power Temp... H/K FIFO V Ref I Source T sensor Voltage T sensor Current Mux V+V+ V-V- HouseKeeping Circuits (1 of n temp sensors) Figure 8. I+I+