Particle Physics with Neutrons Hartmut Abele Fundamental Interactions June 22, 2004
Hartmut Abele 2 Fundamental Interactions n The Standard Model –Two parameters: n Lambda = g A /g V n V ud, CKM matrix n Gravity and Quantum Mechanics n Observables: –The lifetime –Spin of neutron and decay particles Half a dozen observables –Momenta of decay particles }
Hartmut Abele 3 Outline n Correlation measurements in beta-decay –beta asymmetry A = (13) –neutrino-asymmetry B = 0.983(4) –electron-neutrino angular correlation a = 0.102(5) –triple correlation coefficient D = ( 0.6 ± 1.0)·10-3 –triple correlation coefficient R: n Axial to vector coupling (correlation A) –g A /g V = (18) n Quark mixing and CKM Unitarity (A, lifetime) –V ud = (13) –unitarity of CKM-matrix: V ud 2 + V us 2 + V ub 2 = 1 (6.0 ± 2.8)·10 -3 n Neutrinos, left/right (A,B correlation) –mass of right-handed boson m(W R ) > 281 GeV/c2 (90% c.l.) –left-right mixing angle 0.20 < < 0.07(90% c.l.) n New sources of CP violation, (D, R correlation, EDM, this conference) –phase between g A and g V = ( ± 0.10) 0 n Speculation about CPT, (D, R correlation, EDM, this conference)
Hartmut Abele 4 PROCESSES WITH SAME FEYNMAN DIAGRAM: Solar cycle p p D e + e p p e D e … Neutron star formation p e n e Primordial element formation n e + p e ' p e n e n p e e ' Neutrino detectors p e ' n e + Neutrino forward-scattering e p e + n etc. W, Z-productionp p' W e e ' etc. D.Dubbers
Hartmut Abele 5 Outline II n Baryon number violation –neutron-antineutron oscillation time n nbar > 0.86·10 8 s (90% c.l.) n Early Universe – number of neutrino families N = 2.6 ± 0.3 –baryonic matter in universe / crit = (4 ± 1) % n Search for extra dimensions in space time –Gravitational bound quantum states –String theories
Hartmut Abele 6 Processes that violate baryon number Do neutrons oscillate? n nbar Baryon-number oscillations B B? Process allowed in some Grand-Unified Theories n Observable: Antineutron Experimental limit: n nbar > 0.86·10 8 s (90% c.l.) Limit on neutron oscillations probes 10 5 GeV range D.Dubbers
Hartmut Abele 7 Correlation measurements in -decay Electron Proton Neutrino Neutron Spin A B C Observables in neutron decay: Lifetime Spin Momenta of decay particles Observables in neutron decay: Lifetime Spin Momenta of decay particles
Hartmut Abele 8 Transition probability 11% -11%97%SM: 0 correlation asymmetry triple correlation asymmetry Triple correlation Triple correlation SM: 0
Hartmut Abele 9 Particles And Fields matrix for d-u transition: hadron and lepton currents: vector- and axial vector currents: Lagrange function for neutron decay:
Hartmut Abele 10 Coefficient A Coefficient A and lifetime determine V ud and Electron Neutron Spin A Electron Neutron Spin A W( )={1+ v/c PA cos( )} = g A /g V No coincidences !
Hartmut Abele 11 Spectrometer Cross section neutron beam Magnetic field PolarizerSpin flipper
Hartmut Abele 12 A fit Dissertation: J. Reich A exp = A v/c Pf final result: A = (7) = (19) final result: A = (7) = (19) PRL (2002) Vud=0.9717(13) (4: )(12:A)(4:theory)
Hartmut Abele 13 Quark Mixing and CKM Unitarity CKM Matrix Standard Model: quark-mixing should be 'zero-sum game': quark mixing = pure rotation in flavor space i.e. CKM quark mixing matrix should be unitary V ud from Nuclear beta decay V ud =0.9740(5), 2.3 sigma Pi beta decay V ud =0.9717(56) Neutron beta decay, 2.7 sigma High energy physics assuming unitarity Standard Model: quark-mixing should be 'zero-sum game': quark mixing = pure rotation in flavor space i.e. CKM quark mixing matrix should be unitary V ud from Nuclear beta decay V ud =0.9740(5), 2.3 sigma Pi beta decay V ud =0.9717(56) Neutron beta decay, 2.7 sigma High energy physics assuming unitarity u d d u u d u d W V ud e u
Hartmut Abele 14 Free Parameters, Standard Model Ft-values Neutron Deviation from unitarity Visible in the “raw” data! Deviation from unitarity Visible in the “raw” data! Vud=0.9717(13) (4: )(12:A)(4:theory) hep-ph/ hep-ph/
Hartmut Abele 15 Conclusion 2002 n Nuclear beta-decay dominated by theoretical errors = –Restoration of unitarity: 2.3 sigma shift n Neutron beta decay dominated by experimental errors = –Restoration of unitarity: would require a 3 sigma shift in A – a 8 sigma shift in lifetime – radiative corrections are 8 sigma wrong n K decays: 3 sigma shift to explain nuclear beta decay, or 8 sigma shift to explain neutron results
Hartmut Abele 16 Free Parameters, Standard Model, 2004 Ft-values Neutron Deviation from unitarity Visible in the “raw” data! Deviation from unitarity Visible in the “raw” data! Vud=0.9717(13) (4: )(12:A)(4:theory) hep-ph/ hep-ph/
Hartmut Abele 17 Neutron lifetime Munich: r i = 10 cm R a = 30 cm h = 60 cm NIST: Huffmann et al., Nature Mampe et al., PRL (1989)
Hartmut Abele 18
Hartmut Abele 19 The new A measurement n A new beam –The ‘ballistic’ super-mirror cold-neutron guide H113 –H. Haese et al., Nucl. Instr. Meth. A485, 453 (2002) n New Polarizers n New Geometry for Beam polarization –T. Soldner: A perfectly polarized neutron beam n n New analyzer with He cells We want More neutrons No corrections to raw data 100% polarization No background We want More neutrons No corrections to raw data 100% polarization No background
Hartmut Abele 20 Polarization efficiency
Hartmut Abele 21 Coefficient B Two Techinques Electron Proton Neutron Spin Neutrino Electron Proton Neutrino Neutron Spin Electron proton coincidence Our method:
Hartmut Abele 22 Proton detector C foilScintillator Proton Proton detection: Measure electron energy Wait for proton Convert proton into electron signal Proton detection: Measure electron energy Wait for proton Convert proton into electron signal
Hartmut Abele 23 Proton “electron” spectrum Dissertation: J. Reich
Hartmut Abele 24 Same hemisphere Electron Proton Neutron Spin Neutrino Electron Proton Neutrino Neutron Spin
Hartmut Abele 25 Results: B = 0.967±0.012 and C= ±0.011 Dissertation Kreuz 2004 BDetector 1 Detector 2 Correction [%]Error [%]Correction [%]Error [%] Polarization & Flip Efficiency (1.5)0.5(1.8)0.5 Statistics0.8 Accidental coincidences(3.0)0.5(3.5)0.6 Additional Stop pulses Gain 0.01 Offset Edge effect(-0.1)0.05(-0.1)0.05 Electro magnetic mirror(0.5)0.05(0.5)0.05 Grid effect(-0.05)0.05(-0.05)0.05 Backscattering Coefficient A0.03 Coefficient a 0.06 Sum B PDG = 0.983±0.004 and C theory =-0.239
Hartmut Abele 26 n New developments: hep-ph/ CKM-Workshop, Sep. 2002, PMSN-Workshop, NIST 2004 n “little” a: aSpect, Mainz, Munich,2004 n “little” a: Kurchatov Inst., NIST n “Big” A,B,C: HD, 2004 n “Big A + B”: Gatchina n “Big” A: LANL,... n “Big” R: PSI, ongoing n “Big” D: emiT, n “Big” D: Trine, 2003 n “Big” A: HD, 2005 Angular correlations in neutron decay 135° Geometry: emiT 2000 TRINE 2000 LANSL Mainz, Munich
Hartmut Abele 27 CP and Time Reversal Violation Torsten Soldner: CKM Workshop Left-right symmetric Exotic fermionsLeptoquarks Standard Model GUTs some SuSy models some superstring models some composite models From CKM phase: D From d 199Hg : D< …10 -5 D limits phases in LQ couplings! From d 199Hg : D< …10 -5 e.g. SU(2) R U(1) L in some GUTs P. Herczeg, Prog. Part. Nucl. Phys. 46 (2001) 413.
Hartmut Abele 28 Searches for electric dipole moment Why has so much matter survived the big bang? What is the origin of time reversal violation? n CPT = 1: n CP-violation T-violation n THIS CONFERENCE
Hartmut Abele 29 FRM n Cold neutrons at the FRM II –equivalent to existing source at the ILL n UCN source at the FRM II –2 orders of magnitude higher density at FRM
Hartmut Abele 30 PSI, UCN Source, this workshop F overall = 100
Hartmut Abele 31 INPUT: NEUTRON BEAM CONSTANTS OUTPUT: NEUTRON RATES capture flux Φ 1,4 E+10 cm -2 s -1 intensity I 0 =ΦA 1,9 E+12 s -1 beam area A 120 cm 2 density ρ=Φ/v 1,6 E+05 cm -3 mean velocity v 1000ms -1 no. of neutrons per beam length N/l=ρA=I 0 /v 1,9 E+09 m -1 neutr. lifetime 885 s neutron decay rate/beam length n/l = I 0 /v/τ 2,2 E+06 sec -1 m -1 The ‘ballistic’ super-mirror cold-neutron guide H113 H. Haese et al., Nucl. Instr. Meth. A485, 453 (2002)
Hartmut Abele 32 proton or electron detector ~2m, 150mT chopper detector beam stop decay volume neutron beam neutron cloud velocity selector simulated electron trajectories proton or electron detector The New PERKEO Dubbers, Märkisch, H.A.
Hartmut Abele 33 The future with the New Perkeo neutron beamobservablemethodphysics pulsed polarised -asymmetry A , scint. spectr. CKM unitarity weak magnetism pulsed unpol. p-spectrum e- correlation a p, TOFCKM unitarity pulsed polarised p-asymmetry -asymmetry B p, TOFmass of right handed W-boson pulsed unpol. -spectrum , magn. spectr. radiative corrections continous unpol./pol. -helicity , Mott-scatt. right-handed currents continous unpol. p-helicityp, Mott-scatt.
Hartmut Abele 34 This work was done by... n University of Heidelberg n M. Astruc Hoffmann Stefan Baeßler n Dirk Dubbers Uta Peschke n Jürgen ReichH.A. n Ulrich Mayer Daniela Mund n Christian Plonka Christian Vogel H.A. n Bernhard BrandMichael Kreuz n Daniela Mund Markus Brehm n Marc SchumannJochen Krempel H.A. n Michael Kreuz Stefan Baeßler n Bastian Märkisch n Bastian Märkisch, Dirk Dubbers, Marc Schumann, H.A. n Institut Laue-Langevin n Torsten Soldner, Alexander Petoukhov n GSI, TUM n Mayer-Komor, Kindler n Mainz n Stefan Baeßler, Ferenc Glück, A: B: A: New PERKEO:
Hartmut Abele 35 Gravity on a Micron and Limits on Large Extra Dimensions n Galilei –Object: Neutron –Fall height: ~ 50 m Quantum aspect
Hartmut Abele 36 WKB vs. Analytical perturbative
Hartmut Abele 37 Effective potential close above the mirror z F
Hartmut Abele Limits for alpha and lambda H. A. et al., Lecture Notes in Physics, Springer, 2003 mm
Hartmut Abele 39 The gravity work has been done by... n ILL, Grenoble: V. Nesvizhevsky, A. Petukhov, H. Boerner n Gatchina, St. Petersburg A. Gagarsky, G. Petrov, S. Soloviev n Mainz University S. Baeßler n DESY A. Westphal, n Heidelberg University: G. Divkovic, N. Haverkamp, D. Mund, S. Nahrwold, F. Rueß, T. Stöferle, HA n CERN ISN JINR B. van der Vyver K. Protasov, Yu. Voronin Strelkov
Hartmut Abele 40 Summary: Galileo in Quantumland Good limits for non-Newtonian interaction between 1 m and m Limits are comparable to other Limits, Complementary Yukawa forces modify Airyfunction And change energy of the state