Particle Physics with Neutrons Hartmut Abele Fundamental Interactions June 22, 2004.

Slides:



Advertisements
Similar presentations
Teilchenphysik – ohne Beschleuniger und Kosmologie Wiederholung zum Sommersemester 2007.
Advertisements

LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
: The mirror did not seem to be operating properly: A guide to CP violation C hris P arkes 12/01/2006.
IV. Low Energy Probes of SUSY J Erler (UNAM) A Kurylov (Caltech) C Lee (Caltech) S Su (Arizona) P Vogel (Caltech) G Prezeau (Caltech) V Cirigliano (Caltech)
Flavor Violation in SUSY SEESAW models 8th International Workshop on Tau-Lepton Physics Tau04 Junji Hisano (ICRR, U of Tokyo)
SUSY can affect scattering Parity-Violating electron scattering “Weak Charge” ~ sin 2  W ~ 0.1.
IKON7, Instrument clip session, September 2014, ESS Headquarters and Medicon Village, Lund, Sweden A cold neutron beamline for Particle
Measures in the distant past precision measurements: what do they provide? precision experiments part of large facilities precision experiments with neutrons.
Compelling Questions of High Energy Physics? What does the future hold? Persis S. Drell Physics Department Cornell University.
Hartmut Abele Knoxville, 8 June 2006 Neutron Decay Correlation Experiments.
(and some things about the weak interaction)
The CP-violation experiments NA48 at CERN Manfred Jeitler Institute of High Energy Physics of the Austrian Academy of Sciences RECFA meeting Innsbruck,
Hadronic EDMs in SUSY GUTs
Time dependence of SM parameters. Outline Dirac´s hypothesis SM parameters Experimental access to time dependence  laboratory measurements  Quasar absorption.
P461 - particles VII1 Glashow-Weinberg-Salam Model EM and weak forces mix…or just EW force. Before mixing Bosons are massless: Group Boson Coupling Quantum.
Another Route to CP Violation Beyond the SM – Particle Dipole Moments Dave Wark Imperial/RAL WIN05 Delphi June 10, 2005.
Philip Harris University of Sussex (for the EDM Collaboration) The Neutron EDM Experiments at the ILL.
1 B s  J/  update Lifetime Difference & Mixing phase Avdhesh Chandra for the CDF and DØ collaborations Beauty 2006 University of Oxford, UK.
Study of the Time-Reversal Violation with neutrons
P Spring 2003 L14Richard Kass B mesons and CP violation CP violation has recently ( ) been observed in the decay of mesons containing a b-quark.
The Neutron Beta-Decay Exploring the properties of fundamental interactions Hartmut Abele Bar Harbor A,B,C,D,…  The Neutron Alphabet.
Search for R-parity violating Supersymmetric effects in the neutron beta decay N. Yamanaka (Osaka University) 2009 年 8 月 12 日 at KEK In collaboration with.
One-loop analysis of the 4-Femi contribution to the Atomic EDM within R-parity violating MSSM N. YAMANAKA (Osaka University) 2010/8/9 Sigma Hall Osaka.
SuperKEKB to search for new sources of flavor mixing and CP violation - Introduction - Introduction - Motivation for L= Motivation for L=
Search for CP violation in  decays R. Stroynowski SMU Representing CLEO Collaboration.
Gravity at Micron Hartmut Abele. Hartmut Abele, Universität Heidelberg 2 Galileo in Pisa Objekt: Neutron Höhe: ~ 50  m Fallhöhe > 50  m Fallhöhe < 50.
Lecture 15: Beta Decay 23/10/2003 Neutron beta decay: light particles or “leptons”, produced in association. Neutrino presence is crucial to explain.
31 January 2003 NuPECC Town Meeting, January/February GSI 1 Klaus Jungmann, 31 Janur 2003 NuPECC Town Report of Fundamental Interaction.
1/30Peter Fierlinger FERMILAB Diamond-like Carbon for Ultra-cold Neutrons Peter Fierlinger.
Point 1 activities and perspectives Marzio Nessi ATLAS plenary 2 nd October 2004 Large Hadron Collider (LHC)
Fundamental Physics With Cold and Ultra-cold Neutrons Albert Young North Carolina State University.
Test Z’ Model in Annihilation Type Radiative B Decays Ying Li Yonsei University, Korea Yantai University, China Based on J. Hua, C.S Kim, Y. Li, arxiv:
Lecture 16: Beta Decay Spectrum 29/10/2003 (and related processes...) Goals: understand the shape of the energy spectrum total decay rate sheds.
Ultracold neutrons and neutron decay Oliver Zimmer ILL Grenoble / TU München 19th Int. IUPAP Conf. On Few-Body Problems in Physics Bonn, 14 July 2008.
Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC T.-A. Shibata (Tokyo Tech) in collaboration with N. Saito (Kyoto Univ) and.
1 Electroweak Physics Lecture 5. 2 Contents Top quark mass measurements at Tevatron Electroweak Measurements at low energy: –Neutral Currents at low momentum.
Anthropology Series In the Beginning How did the Universe begin? Don’t know!
Universality of weak interactions?
QFD, Weak Interactions Some Weak Interaction basics
The aSPECT collaboration: Institut für Physik, Universität Mainz, Germany: F. Ayala Guardia, M. Borg, F. Glück, W. Heil, G. Konrad, N. Luquero Llopis,
B Grants-in-aid KIBAN-B (FY2014~) Magnetic Dipole Moment g-2 Electric Dipole Moment EDM Utilize high intensity.
Phys 102 – Lecture 28 Life, the universe, and everything 1.
Lecture 18: Total Rate for Beta Decay (etc...) 6/11/2003
1 Electroweak Physics Lecture 2. 2 Last Lecture Use EW Lagrangian to make predictions for width of Z boson: Relate this to what we can measure: σ(e+e−
Particle Physics with Slow Neutrons ILNGS Summer Institute, September 2005Torsten Soldner Particle Physics with Slow Neutrons I: Neutrons in the Standard.
June 2004Fundamental Interactions1 Klaus Jungmann ECT*, Trento, June 2004 Fundamental Interactions.
CP violation in seesaw mechanism Junji Hisano (ICRR, Univ. of Tokyo) International Conference on the Seesaw Mechanism (SEESAW25) June 2004, Institut.
Flavor and CP violation in SUSY seesaw models Junji Hisano (ICRR, Univ. of Tokyo) The 12th International Conference on Supersymmetry and Unification of.
Contents Introduction (motivation of precise measurements of neutron lifetime, history of experimental accuracy improvement). a. Result of neutron lifetime.
SUSY GUT Predictions for Neutrino Oscillation Mu-Chun Chen Brookhaven National Laboratory DUSEL Workshop, January 4-7, 2005 University of Colorado at Boulder.
International Workshop “Search for Baryon and Lepton Number Violations”, LBLN Berkeley, September Yuri Kamyshkov / University of Tennessee.
 EDM with polarized beams Gabriel González Sprinberg Instituto de Física, Facultad de Ciencias Montevideo Uruguay EUROPHYSICS.
Hartmut Abele, University of Heidelberg 1 4. Correlation D and R measurements in  - decay Electron Neutrino Neutron Spin D Electron Neutron Spin R.
INSTITUT MAX VON LAUE - PAUL LANGEVIN V.V.Nesvizhevsky Institute Laue-Langevin, Grenoble.
P Spring 2002 L16Richard Kass B mesons and CP violation CP violation has recently ( ) been observed in the decay of mesons containing a b-quark.
10/29/2007Julia VelkovskaPHY 340a Lecture 4: Last time we talked about deep- inelastic scattering and the evidence of quarks Next time we will talk about.
EDMs in the SUSY GUTs Junji Hisano (ICRR, Univ. of Tokyo) NuFact04 6th International Workshop on Neutrino Factories and Superbeams, Osaka University, Japan.
Beauty and charm at the LHC, Jeroen van Tilburg, FOM Veldhoven 2014 Jeroen van Tilburg Beauty and charm at the LHC: searches for TeV scale phenomena in.
High Precision Experiments with Cold and Ultra-Cold Neutrons Hartmut Abele INPC 2013, 3 June 2013 qBounce- and PERC-Collaboration |1 > 1.4 peV |3 > 3.32.
Double beta decay and Leptogenesis International workshop on double beta decay searches Oct SNU Sin Kyu Kang (Seoul National University of.
INSTITUT MAX VON LAUE - PAUL LANGEVIN Measurement of parity-violating asymmetries in the reactions of light nuclei with polarized neutrons ( 6.
qBOUNCE: a quantum bouncing ball gravity spectrometer
Precision experiments
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
University of Manchester
The Physics of Neutrinos
A cold neutron beam facility for particle physics at the ESS
Search For New Physics Chary U of S.
Methods of Experimental Particle Physics
Ichep.
Presentation transcript:

Particle Physics with Neutrons Hartmut Abele Fundamental Interactions June 22, 2004

Hartmut Abele 2 Fundamental Interactions n The Standard Model –Two parameters: n Lambda = g A /g V n V ud, CKM matrix n Gravity and Quantum Mechanics n Observables: –The lifetime –Spin of neutron and decay particles Half a dozen observables –Momenta of decay particles }

Hartmut Abele 3 Outline n Correlation measurements in beta-decay –beta asymmetry A =  (13) –neutrino-asymmetry B = 0.983(4) –electron-neutrino angular correlation a =  0.102(5) –triple correlation coefficient D = (  0.6 ± 1.0)·10-3 –triple correlation coefficient R: n Axial to vector coupling (correlation A) –g A /g V =  (18) n Quark mixing and CKM Unitarity (A, lifetime) –V ud = (13) –unitarity of CKM-matrix: V ud 2 + V us 2 + V ub 2 = 1  (6.0 ± 2.8)·10 -3 n Neutrinos, left/right (A,B correlation) –mass of right-handed boson m(W R ) > 281 GeV/c2 (90% c.l.) –left-right mixing angle  0.20 <  < 0.07(90% c.l.) n New sources of CP violation, (D, R correlation, EDM, this conference) –phase between g A and g V  = ( ± 0.10) 0 n Speculation about CPT, (D, R correlation, EDM, this conference)

Hartmut Abele 4 PROCESSES WITH SAME FEYNMAN DIAGRAM: Solar cycle p p  D e + e p p e   D e … Neutron star formation p e   n e Primordial element formation n e +  p e ' p e   n e n  p e  e ' Neutrino detectors p e '  n e + Neutrino forward-scattering e p  e + n etc. W, Z-productionp p'  W  e  e ' etc. D.Dubbers

Hartmut Abele 5 Outline II n Baryon number violation –neutron-antineutron oscillation time  n nbar > 0.86·10 8 s (90% c.l.) n Early Universe – number of neutrino families N = 2.6 ± 0.3 –baryonic matter in universe  /  crit = (4 ± 1) % n Search for extra dimensions in space time –Gravitational bound quantum states –String theories

Hartmut Abele 6 Processes that violate baryon number Do neutrons oscillate? n  nbar Baryon-number oscillations B   B? Process allowed in some Grand-Unified Theories n Observable: Antineutron Experimental limit:  n nbar > 0.86·10 8 s (90% c.l.) Limit on neutron oscillations probes 10 5 GeV range D.Dubbers

Hartmut Abele 7 Correlation measurements in  -decay Electron Proton Neutrino Neutron Spin A B C Observables in neutron decay: Lifetime  Spin Momenta of decay particles Observables in neutron decay: Lifetime  Spin Momenta of decay particles

Hartmut Abele 8 Transition probability 11% -11%97%SM: 0  correlation asymmetry triple correlation  asymmetry Triple correlation Triple correlation SM: 0

Hartmut Abele 9 Particles And Fields matrix for d-u transition: hadron and lepton currents: vector- and axial vector currents: Lagrange function for neutron decay:

Hartmut Abele 10 Coefficient A Coefficient A and lifetime  determine V ud and Electron Neutron Spin A Electron Neutron Spin A W( )={1+ v/c PA cos( )} = g A /g V No coincidences !

Hartmut Abele 11 Spectrometer Cross section neutron beam Magnetic field PolarizerSpin flipper

Hartmut Abele 12 A fit Dissertation: J. Reich A exp = A v/c Pf final result: A = (7) = (19) final result: A = (7) = (19) PRL (2002) Vud=0.9717(13) (4:  )(12:A)(4:theory)

Hartmut Abele 13 Quark Mixing and CKM Unitarity CKM Matrix Standard Model: quark-mixing should be 'zero-sum game': quark mixing = pure rotation in flavor space i.e. CKM quark mixing matrix should be unitary V ud from Nuclear beta decay V ud =0.9740(5), 2.3 sigma Pi beta decay V ud =0.9717(56) Neutron beta decay, 2.7 sigma High energy physics assuming unitarity Standard Model: quark-mixing should be 'zero-sum game': quark mixing = pure rotation in flavor space i.e. CKM quark mixing matrix should be unitary V ud from Nuclear beta decay V ud =0.9740(5), 2.3 sigma Pi beta decay V ud =0.9717(56) Neutron beta decay, 2.7 sigma High energy physics assuming unitarity u d d u u d u d W V ud e u

Hartmut Abele 14 Free Parameters, Standard Model Ft-values Neutron Deviation from unitarity Visible in the “raw” data! Deviation from unitarity Visible in the “raw” data! Vud=0.9717(13) (4:  )(12:A)(4:theory) hep-ph/ hep-ph/

Hartmut Abele 15 Conclusion 2002 n Nuclear beta-decay dominated by theoretical errors  =  –Restoration of unitarity: 2.3 sigma shift n Neutron beta decay dominated by experimental errors  =  –Restoration of unitarity: would require a 3 sigma shift in A – a 8 sigma shift in lifetime – radiative corrections are 8 sigma wrong n K decays: 3 sigma shift to explain nuclear beta decay, or 8 sigma shift to explain neutron results

Hartmut Abele 16 Free Parameters, Standard Model, 2004 Ft-values Neutron Deviation from unitarity Visible in the “raw” data! Deviation from unitarity Visible in the “raw” data! Vud=0.9717(13) (4:  )(12:A)(4:theory) hep-ph/ hep-ph/

Hartmut Abele 17 Neutron lifetime  Munich: r i = 10 cm R a = 30 cm h = 60 cm NIST: Huffmann et al., Nature Mampe et al., PRL (1989)

Hartmut Abele 18

Hartmut Abele 19 The new A measurement n A new beam –The ‘ballistic’ super-mirror cold-neutron guide H113 –H. Haese et al., Nucl. Instr. Meth. A485, 453 (2002) n New Polarizers n New Geometry for Beam polarization –T. Soldner: A perfectly polarized neutron beam n n New analyzer with He cells We want More neutrons No corrections to raw data 100% polarization No background We want More neutrons No corrections to raw data 100% polarization No background

Hartmut Abele 20 Polarization efficiency

Hartmut Abele 21 Coefficient B Two Techinques Electron Proton Neutron Spin Neutrino Electron Proton Neutrino Neutron Spin Electron proton coincidence Our method:

Hartmut Abele 22 Proton detector C foilScintillator Proton Proton detection: Measure electron energy Wait for proton Convert proton into electron signal Proton detection: Measure electron energy Wait for proton Convert proton into electron signal

Hartmut Abele 23 Proton “electron” spectrum Dissertation: J. Reich

Hartmut Abele 24 Same hemisphere Electron Proton Neutron Spin Neutrino Electron Proton Neutrino Neutron Spin

Hartmut Abele 25 Results: B = 0.967±0.012 and C= ±0.011 Dissertation Kreuz 2004 BDetector 1 Detector 2 Correction [%]Error [%]Correction [%]Error [%] Polarization & Flip Efficiency (1.5)0.5(1.8)0.5 Statistics0.8 Accidental coincidences(3.0)0.5(3.5)0.6 Additional Stop pulses Gain 0.01 Offset Edge effect(-0.1)0.05(-0.1)0.05 Electro magnetic mirror(0.5)0.05(0.5)0.05 Grid effect(-0.05)0.05(-0.05)0.05 Backscattering Coefficient A0.03 Coefficient a 0.06 Sum B PDG = 0.983±0.004 and C theory =-0.239

Hartmut Abele 26 n New developments: hep-ph/ CKM-Workshop, Sep. 2002, PMSN-Workshop, NIST 2004 n “little” a: aSpect, Mainz, Munich,2004 n “little” a: Kurchatov Inst., NIST n “Big” A,B,C: HD, 2004 n “Big A + B”: Gatchina n “Big” A: LANL,... n “Big” R: PSI, ongoing n “Big” D: emiT, n “Big” D: Trine, 2003 n “Big” A: HD, 2005 Angular correlations in neutron decay 135° Geometry: emiT 2000 TRINE 2000 LANSL Mainz, Munich

Hartmut Abele 27 CP and Time Reversal Violation Torsten Soldner: CKM Workshop Left-right symmetric Exotic fermionsLeptoquarks Standard Model GUTs some SuSy models some superstring models some composite models From CKM phase: D  From d 199Hg : D< …10 -5 D limits phases in LQ couplings! From d 199Hg : D< …10 -5 e.g. SU(2) R  U(1) L in some GUTs P. Herczeg, Prog. Part. Nucl. Phys. 46 (2001) 413.

Hartmut Abele 28 Searches for electric dipole moment Why has so much matter survived the big bang? What is the origin of time reversal violation? n CPT = 1: n CP-violation  T-violation n THIS CONFERENCE

Hartmut Abele 29 FRM n Cold neutrons at the FRM II –equivalent to existing source at the ILL n UCN source at the FRM II –2 orders of magnitude higher density at FRM

Hartmut Abele 30 PSI, UCN Source, this workshop F overall = 100

Hartmut Abele 31 INPUT: NEUTRON BEAM CONSTANTS OUTPUT: NEUTRON RATES capture flux Φ 1,4 E+10 cm -2 s -1 intensity I 0 =ΦA 1,9 E+12 s -1 beam area A 120 cm 2 density ρ=Φ/v 1,6 E+05 cm -3 mean velocity v 1000ms -1 no. of neutrons per beam length N/l=ρA=I 0 /v 1,9 E+09 m -1 neutr. lifetime  885 s neutron decay rate/beam length n/l = I 0 /v/τ 2,2 E+06 sec -1 m -1 The ‘ballistic’ super-mirror cold-neutron guide H113 H. Haese et al., Nucl. Instr. Meth. A485, 453 (2002)

Hartmut Abele 32 proton or electron detector ~2m, 150mT chopper detector beam stop decay volume neutron beam neutron cloud velocity selector simulated electron trajectories proton or electron detector The New PERKEO Dubbers, Märkisch, H.A.

Hartmut Abele 33 The future with the New Perkeo neutron beamobservablemethodphysics pulsed polarised  -asymmetry A , scint. spectr. CKM unitarity weak magnetism pulsed unpol. p-spectrum  e- correlation a p, TOFCKM unitarity pulsed polarised p-asymmetry  -asymmetry B p, TOFmass of right handed W-boson pulsed unpol.  -spectrum , magn. spectr. radiative corrections continous unpol./pol.  -helicity , Mott-scatt. right-handed currents continous unpol. p-helicityp, Mott-scatt.

Hartmut Abele 34 This work was done by... n University of Heidelberg n M. Astruc Hoffmann Stefan Baeßler n Dirk Dubbers Uta Peschke n Jürgen ReichH.A. n Ulrich Mayer Daniela Mund n Christian Plonka Christian Vogel H.A. n Bernhard BrandMichael Kreuz n Daniela Mund Markus Brehm n Marc SchumannJochen Krempel H.A. n Michael Kreuz Stefan Baeßler n Bastian Märkisch n Bastian Märkisch, Dirk Dubbers, Marc Schumann, H.A. n Institut Laue-Langevin n Torsten Soldner, Alexander Petoukhov n GSI, TUM n Mayer-Komor, Kindler n Mainz n Stefan Baeßler, Ferenc Glück, A: B: A: New PERKEO:

Hartmut Abele 35 Gravity on a Micron and Limits on Large Extra Dimensions n Galilei –Object: Neutron –Fall height: ~ 50  m Quantum aspect

Hartmut Abele 36 WKB vs. Analytical perturbative

Hartmut Abele 37 Effective potential close above the mirror z F

Hartmut Abele Limits for alpha and lambda H. A. et al., Lecture Notes in Physics, Springer, 2003 mm 

Hartmut Abele 39 The gravity work has been done by... n ILL, Grenoble: V. Nesvizhevsky, A. Petukhov, H. Boerner n Gatchina, St. Petersburg A. Gagarsky, G. Petrov, S. Soloviev n Mainz University S. Baeßler n DESY A. Westphal, n Heidelberg University: G. Divkovic, N. Haverkamp, D. Mund, S. Nahrwold, F. Rueß, T. Stöferle, HA n CERN ISN JINR B. van der Vyver K. Protasov, Yu. Voronin Strelkov

Hartmut Abele 40 Summary: Galileo in Quantumland Good limits for non-Newtonian interaction between 1  m and  m Limits are comparable to other Limits, Complementary Yukawa forces modify Airyfunction And change energy of the state