LHC IR UPGRADE - PHASE I CORRECTOR STATUS UPDATE N. Dalexandro, N. Elias, M. Karppinen, J. Mazet, J-C. Perez, D. Smekens, G. Trachez 03/02/10M. Karppinen.

Slides:



Advertisements
Similar presentations
Superconducting Magnet Program S. Gourlay CERN March 11-12, Lawrence Berkeley National Laboratory IR Quad R&D Program LHC IR Upgrade Stephen A.
Advertisements

11 T Dipole for DS Status of CERN Activities M. Karppinen CERN TE-MSC On behalf of B. Auchmann, L. Bottura, B. Holzer, L. Oberli, L. Rossi, D. Smekens,
24/01/08Energy deposition, LIUWG, Elena Wildner1 Upgrade phase 1: Energy deposition in the triplet Elena Wildner Francesco Cerutti Marco Mauri.
Preliminary Design of Nb 3 Sn Quadrupoles for FCC-hh M. Karppinen CERN TE-MSC.
F. Savary on behalf of the WP11 team Input from V. Baglin, D. Ramos.
R. Ostojic, WAMSDO, 19 May 2008 LHC Insertion Region Upgrade Phase I 1.Upgrade goals and milestones 2.Review of IR systems: main findings 3.The emerging.
Superconducting Large Bore Sextupole for ILC
J. García, F. Toral (CIEMAT) P. Fessia (CERN) May, 26 th 2015.
LARP review, Fermilab, 6/10/2013Magnet Project Overview – G. Sabbi 1 HL-LHC IR Quadrupole Magnet Project Overview GianLuca Sabbi Internal Review of proposed.
Coil working group video-meeting P. Ferracin, J. C. Perez, S. Izquierdo Bermudez, X. Sarasola January 29, 2014.
E. Todesco PROPOSAL OF APERTURE FOR THE INNER TRIPLET E. Todesco CERN, Geneva Switzerland With relevant inputs from colleagues F. Cerutti, S. Fartoukh,
Magnet designs for Super-FRS and CR
LQ status and plans – G. Ambrosio 1 LARP Collaboration Meeting - LBNL, April , 2006 BNL - FNAL - LBNL - SLAC OUTLINE: Goals, Input and Output Sub-tasks.
First approaches J. García, F. Toral, J. Munilla – CIEMAT.
11 T Nb3Sn Demonstrator Dipole R&D Strategy and Status
11 T Dipole Experience M. Karppinen CERN TE-MSC On behalf of CERN-FNAL project teams The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded.
F. Savary. Click here to add footer 2 Outline Context Constraints & Boundary conditions Project plan Production strategy A few words on QA Conclusions.
E. Todesco HL-LHC: OUTLOOK ON PROTECTION FOR IR MAGNETS (WP3) E. Todesco CERN, Geneva Switzerland CERN, 23 rd April 2015 MPE meeting.
Title – xxxx 1 LARP & US-HiLumi Contribution to the Inner Triplet Quadrupoles G. Ambrosio Cost and Schedule Review CERN, March 9 th -11 th 2015.
Technical agreement n 3 New SC Magnets activities P. Fessia (G. De Rijk), D. Reynet, J.M Rifflet.
S. Caspi, LBNL HQ Progress and Schedule Shlomo Caspi LBNL LARP Collaboration Meeting – CM13 Port Jefferson November 4-6, 2009.
MQXF Design and Conductor Requirements P. Ferracin MQXF Conductor Review November 5-6, 2014 CERN.
General Considerations for the Upgrade of the LHC Insertion Magnets
D. Schoerling FCC Week Washington L. Bottura, J. van Nugteren, M. Karppinen 26/03/
LARP Magnet Progress Michael Lamm For the LARP Collaboration bnl - fnal - lbnl - slac US LHC Accelerator Research Program All Experimenters’ Meeting Monday,
WP6 status Paolo Fessia. Summary Status of the WP6 and change of WP coordinator Lowβ quadrupole status Corrector status Cryostat status.
LARP Collaboration Meeting, April 26-28, 2006Gian Luca Sabbi HQ Design Study (WBS ) LARP Collaboration Meeting April 26-28, 2006 N. Andreev, E.
11 T Dipole Project Goals and Deliverables M. Karppinen on behalf of CERN-FNAL collaboration “Demonstrate the feasibility of Nb3Sn technology for the DS.
FCC week March 2015 Marriott Georgetown Hotel D2 for FCC P.Fabbricatore INFN Genova D2 for FCC P.Fabbricatore & S.Farinon INFN Genova Presented.
11 T Dipole Project CERN Status M. Karppinen 11 T Management meeting 1 July 2013.
Q4 MAGNETS FOR HL-LHC J.M. Rifflet, M. Segreti, E. Todesco WP3 - Q4 magnets for HL-LHC 5th Joint HiLumi LHC-LARP Annual meeting Research supported.
11 T Dipole Status May 2012 M. Karppinen CERN TE-MSC On behalf of CERN-FNAL collaboration.
E. Todesco INTERACTION REGION MAGNETS E. Todesco On behalf of the WP3 collaboration CERN, Geneva, Switzerland CERN, 27 th October 2015.
4th Joint HiLumi LHC-LARP Annual Meeting D2 Design, Status, Plan P.Fabbricatore & S.Farinon INFN Genova Presented by E.Todesco (CERN)  INFN Genova is.
Cosine-theta configurations for S.C. Dipole Massimo Sorbi on behalf of: INFN LASA & Genova Team Giovanni Bellomo, Pasquale Fabbricarore, Stefania Farinon,
DESIGN STUDIES IR Magnet Design P. Wanderer LARP Collaboration Meeting April 27, 2006.
E. Todesco LAYOUT FOR INTERACTION REGIONS IN HI LUMI LHC E. Todesco CERN, Geneva Switzerland Acknowledgements: B. Dalena, M. Giovannozzi, R. De Maria,
Long Quad (LQ) & High Gradient (HQ) Series Alexander Zlobin bnl - fnal- lbnl - slac US LHC Accelerator Research Program DOE LARP review Fermilab, June.
LARP review, Fermilab, 6/10/2013Magnet Project Overview – G. Sabbi 1 HL-LHC IR Quadrupole Magnet Project Overview GianLuca Sabbi Internal Review of proposed.
DOE Review of LARP – February 17-18, 2014 SQXF Coil Design and Fabrication Winding and Curing Miao Yu February 17,
Super Fragment Separator (Super-FRS) Machine and Magnets H. Leibrock, GSI Darmstadt Review on Cryogenics, February 27th, 2012, GSI Darmstadt.
First Q4 cold mass engineering follow up meeting 16/03/2016 Q4 Status update H. Felice, M. Segreti, D. Simon and JM. Rifflet.
2 nd LARP / HiLumi Collaboration Mtg, May 9, 2012LHQ Goals and Status – G. Ambrosio 11 LHQ Goals and Status Giorgio Ambrosio Fermilab 2 nd LARP / HiLumi.
R. Ostojic, IRP1 CD Review, 31 July 2008 LHC IR Upgrade Phase I Goals and Constraints 1.Upgrade goals and milestones 2.Upgrade of IR systems: main constraints.
CERN, 11th November 2011 Hi-lumi meeting
Hardware Challenges and Limitations
HL-LHC Magnet components and assemblies
MQXC Nb-Ti 120mm 120T/m 2m models
SLHC –PP WP6 LHC IR Upgrade - Phase I.
Model magnet test results at FNAL
11 T Dipole Integration & Plans M. Karppinen
MQXF Goals & Plans G. Ambrosio MQXF Conductor Review
Agenda 9:00  - Welcome ASG speaker 9:10 -  Introduction -       P.Fabbricatore 9:25 - The D2   magnets in HL-LHC   -  E. Todesco.
the MDP High Field Dipole Demonstrator
11 T Dipole Project Overview and Status
Introduction to the technical content The Q4 magnet (MQYY) for HL-LHC
Yingshun Zhu Accelerator Center, Magnet Group
Large aperture Q4 M. Segreti, J.M. Rifflet
MQXF coil cross-section status
MQYY: superconducting Quadrupole magnet for Hl-lhc
Upgrade phase 1: Energy deposition in the triplet
HL LHC WP3 (magnets) TASK 2 ADVANCEMENT
Large aperture Q4 M. Segreti, J.M. Rifflet
PROPOSAL OF APERTURE FOR THE INNER TRIPLET
Design of Nb3Sn IR quadrupoles with apertures larger than 120 mm
Design of Nb3Sn IR quadrupoles with apertures larger than 120 mm
CEPC Final Focus Superconducting Quadrupole and Anti-solenoid Magnets
Review of Quench Limits
Qingjin XU Institute of High Energy Physics (IHEP),
Cross-section of the 150 mm aperture case
Presentation transcript:

LHC IR UPGRADE - PHASE I CORRECTOR STATUS UPDATE N. Dalexandro, N. Elias, M. Karppinen, J. Mazet, J-C. Perez, D. Smekens, G. Trachez 03/02/10M. Karppinen TE-MSC-ML1 Q1 Q2aQ2bQ3CPD1QDX

Corrector Package (CP) 03/02/10M. Karppinen TE-MSC-ML2 CurrentIntegrated strength (field)Aperture MCXB (B 1 /A 1 )+/- 2.4 kA 1.5 Tm140 mm MQXS (A 2 )+/- 2.4 kA0.65 mm140 mm MQXSMCXH ~1 m~0.9 m MCXBV ~0.5 m MCXT (B 6 )+/- 120A mm140 mm MCXO (B 4 )+/- 120A mm140 mm MCXSO (A 4 )+/- 120A mm140 mm MCXSS (A 3 )+/- 120A mm140 mm MCXS (B 3 )+/- 120A mm140 mm IPIP IPIP MCXSS MCXS MCXSO MCXO MCXT ~0.5 m ~1 m

Correctors in Q2 Base-line (HV and VH) orbit corrector scheme allows controlling the orbit to a level 3 times larger that then BPM resolution. To reach the same level as the effective BPM resolution :  Provide 1.5 Tm (1.8 Tm) in H&V-plane in BOTH locations.  Feasibility study underway on combined H/V-corrector that meets the reliability requirements (Report by Mid Model work..) An extra H/V pair means:  Magnet R&D, material R&D, design, component & tooling procurement  Additional powering and protections circuits 03/02/10M. Karppinen TE-MSC-ML3 7 m MCXBV (MCXBHV?) m MQXC Q2aQ2bQ1 MQXC 10 m Q3 MQXC 10 m m MCXBH (MCXBHV?) REF: S. Fartoukh, R. Tomas, J. Miles: “Specification of the Closed Orbit Corrector magnets for the NEW Inner Triplets”, sLHC Project Report 030

Radiation Environment (Q2a & CP) 03/02/10M. Karppinen TE-MSC-ML4 Courtesy of F. Cerrutti & A. Mereghetti EN-STI-EET, FLUKA-team

Radiation Environment (sLHC v2.0) Luminosity: 2 L 0 = 2 × cm -2 s -1 & 1000 fb -1 Peak dose CP: ~ MGy ø120 mm aperture, no shielding ~ MGy ø140 mm aperture, no shielding ~10 MGy ø140 mm aperture, 10 mm SS Peak dose in Q2 (with 13 mm liner in Q1): ~28 MGy, ø120 mm aperture, no shielding ~ 8 MGy ø140 mm aperture, 10 mm SS 03/02/10M. Karppinen TE-MSC-ML5 Courtesy of F. Cerrutti & A. Mereghetti EN-STI-EET, FLUKA-team

Organization MCXB  DesignCERN  ModelCERN  Series (20 off)Special French Contribution/CERN? MQXS  DesignCERN  Model & R&DCERN & STFC  Series (5 off)Special French Contribution/CERN? MCXS and other Higher Order Correctors (TBC)  DesignCIEMAT  ModelCIEMAT  Series (5 off)Special French Contribution/CERN? Testing (cold)  at CERN  Plan B for Models: RAL, CEA (TBC) Cold mass integration and cryostat assembly at CERN 03/02/10M. Karppinen TE-MSC-ML6

Organization: STFC Involvement R&D on coated metallic end spacers for cos Ɵ coils (rad resistance, alternatively usable for thermal reaction of Nb3Sn Coils) Validation of porous all polyimide insulation for the 18 strand Rutherford cable Study of E-modulus of the insulated cable / dielectric properties Assembly of the models at CERN (short mech. model & model) 03/02/10M. Karppinen TE-MSC-ML7

NIT Funding 03/02/10M. Karppinen TE-MSC-ML8 Courtesy of S. Russenschuck

MCXB 4-Block Design 03/02/10M. Karppinen TE-MSC-ML9 Courtesy of L. Favre 1000 Field strength 1.5 Tm Operating temp 1.9 K Current 2.4 kA Inductance 10 mH New 4.37 mm cable & Polyimide insulation Self-supporting collars Single piece yoke Ø570 Ø140

Unit Integrated fieldTm6 Nominal fieldT4.0 Mag. lengthm1.50 Nominal currentA2438 Stored energykJ233 Self inductancemH78 Working point60% Cable width/mid-heightmm4.37 / Total lengthm AperturemmØ140 Total masskg~2700 MCXB Initial 6-Block Design 03/02/1010M. Karppinen TE-MSC-ML

Unit Integrated fieldTm1.5 Nominal fieldT2.3 Mag. lengthm0.65 Nominal currentA2400 Stored energykJ28 Self inductancemH10 Working point50% Cable width/mid-heightmm4.37 / Total lengthm~1 AperturemmØ140 Total masskg~2000 MCXB Single-Layer Design 03/02/1011M. Karppinen TE-MSC-ML

18-Strand Cable Strand parameters Cu:Sc1.75 Strand diameter0.48mm Metal section0.181mm 2 No of filaments2300 Filament diam.6.0µm I(5T,4.2K)203*A jc3085*A/mm 2 Cable Parameters No of strands18 Metal area3.257mm 2 Cable thickness0.845mm Cable width4.370mm Cable area3.692mm 2 Metal fraction0.882 Key-stone angle0.67degrees Inner Thickness0.819mm Outer Thickness0.870mm Polyimide Insulation: 2 x 25µm + 55 µm Trial cabling length (~100 m) done! Insulation trials & characterization in progress.. 03/02/1012M. Karppinen TE-MSC-ML *) extracted strand March -09

Cable Insulation 03/02/10M. Karppinen TE-MSC-ML13

Cable insulation 03/02/10M. Karppinen TE-MSC-ML14

Conductor and Insulation Needs 03/02/10M. Karppinen TE-MSC-ML15 18-strand Cable MCXBMQSX Unit Cable Length32030m Total Cable Length7.21.2km Total Strand (+5%) km Polyimide 25 µm61.2kg Polyimide 55 µm71.3kg ~250 km of strand in

MCXB 4-Block Design: FEA 03/02/10M. Karppinen TE-MSC-ML mm model to verify material properties and assembly parameters Courtesy of N. Elias

MCXB 3D (return end) 03/02/10M. Karppinen TE-MSC-ML17 ˜260 mm B1= 0.37 Tm x T x 0.34 m = 1.5 Tm ENDSSTRAIGHT b 3 = units b 5 = units b 7 = units b 9 = units b 11 = units Design current = 2.4 kA Coil length = ˜0.84 m Total length = ˜1 m

MCXB 3D Harmonics 03/02/10 M. Karppinen TE-MSC-ML18 Integrated Field (2.4 kA) B1 1.5 Tm b unit b unit b unit b unit b unit a unit a unit a unit a unit a unit a unit

MCXB 4-Block Design Quench (3kA) 03/02/10M. Karppinen TE-MSC-ML19 Rd = 0.16 Ω Warm diode No heaters

MQXS Assembly 03/02/10M. Karppinen TE-MSC-ML20 Ø570 Ø Field strength 0.65 Tm Gradient 25.5 T/m Operating temp 1.9 K Current 2.4 kA Inductance 3.3 mH New 4.37 mm cable & Polyimide insulation Single layer coils Self-supporting collars Single piece yoke Courtesy of G. Villiger

MQSX Initial 2-Layer Design Unit Nominal gradientT/m 40 Mag. lengthm 0.5 Nominal currentA 1602 Stored energykJ 19.1 Self inductancemH 15 Working point <55% Cable width/mid-heightmm3.40 / Cu/Sc 1.2 Total lengthm ~0.8 Aperturemm ø140 Total masskg ~500 03/02/1021M. Karppinen TE-MSC-ML

MQSX Single-Layer Base-Line Design Unit Nominal gradientT/m 21 Mag. lengthm 0.64 Nominal currentA 2400 Stored energykJ 8.8 Self inductancemH 3.0 Working point 44 % Cable width/mid-heightmm4.37 / Cu/Sc 1.2 Total lengthm ~0.9 Aperturemm ø140 Total masskg ~500 03/02/1022M. Karppinen TE-MSC-ML

MQSX 3D (return end) 03/02/10M. Karppinen TE-MSC-ML23 ˜120 mm A2(40 mm)= Tm x T/m x 0.47 m = 0.65Tm ENDSSTRAIGHT a 6 = units a 10 = 0.01 units a 14 = 1.35 units Design current = 2.4 kA Coil length = 0.7 m Total length = ~0.9 m

MQSX 3D harmonics 03/02/10M. Karppinen TE-MSC-ML24 Integrated Field (2.4 kA) A Tm a unit a unit a unit b unit b unit b unit b unit

MQSX Single Layer Design Quench (3kA) 03/02/10M. Karppinen TE-MSC-ML25 Rd = 0.16 Ω Warm diode No heaters

MQXS Single-Layer Design: FEA 03/02/10M. Karppinen TE-MSC-ML26 Courtesy of N. Elias

Super-ferric MCSX Design report in progress This concept is no longer compatible with the requirements Updated scope of CIEMAT’s involvement being discussed 03/02/10M. Karppinen TE-MSC-ML27 Courtesy of Iker Rodriguez (CIEMAT)

Next steps… Optics studies => Confirm parameters & Lay-out (getting there..) Cabling & insulation trials and characterization (in progress..) Detailed fabrication design (magnet & tooling) (in progress..) Model magnet construction (MCXB, MQXS) Feasibility study of combined H-V orbit corrector (in progress..)  Material R&D, Trials, Magnet model..? Higher order correctors  Magnetic and mechanical designs(Feb Sep -10)  Material R&D (Mar Nov -10)  Conductor procurement (Aug Jul -11)  Model/prototype magnets construction (Jul -11..May -12) 03/02/1028M. Karppinen TE-MSC-ML

Milestones… (MCXB & MQXS) Parameter listOct-09..Jan-10 Magnetic and mechanical designNov-09 Fabrication drawingsMay-10 Trial coilsJul-10 Mechanical modelMay-10 & Jul -10 Model magnets completedDec-10 Technical specificationsMar-11 Industrial contractsJul-11 Pre-series magnetsJul-12 Series productionSep-12.. Dec-13 03/02/1029M. Karppinen TE-MSC-ML

Preliminary Cost-estimate 03/02/10M. Karppinen TE-MSC-ML30 Low Profile Costing, considering free material (SC cable, steel for collars, iron for laminations), and Contractors already equipped with curing press and collaring press.

Yet To Define… Integration & Parameters  Final optics, Orbit correction scheme, error tables  Bus-bar routing and X-sections  Cold-mass & Cryo-magnet integration  QPS design and lay-out Contractual  Scope of Special French contribution  Industrial procurement and/or in-house production  Testing Funding.. 03/02/10M. Karppinen TE-MSC-ML31