PAC-2001, Chicago, IL Paul Emma SLAC SLAC Issues and R&D Critical to the LCLS UCLA LLNL.

Slides:



Advertisements
Similar presentations
 x,y = 0.4  m (slice) I pk = 3.0 kA  E /E = 0.01% (slice) (25 of 33 undulators installed) L G = 3.3 m IT WORKS!
Advertisements

Tessa Charles Australian Synchrotron / Monash University 1 Bunch Compression Schemes for X-band FELs.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
LCLS Linac Coherent Light Source Update John N. Galayda LCLS Project Manager Basic Energy Sciences Advisory Committee Meeting 2-3 August 2001.
Sub-femtosecond bunch length diagnostic ATF Users Meeting April 26, 2012 Gerard Andonian, A. Murokh, J. Rosenzweig, P. Musumeci, E. Hemsing, D. Xiang,
Approaches for the generation of femtosecond x-ray pulses Zhirong Huang (SLAC)
Hard X-ray FELs (Overview) Zhirong Huang March 6, 2012 FLS2012 Workshop, Jefferson Lab.
Brookhaven Science Associates U.S. Department of Energy A Few Comments on the Photoinjector Performance X.J. Wang National Synchrotron Light Source Brookhaven.
P. Emma LCLS FAC 12 Oct Comments from LCLS FAC Meeting (April 2004): J. Roßbach:“How do you detect weak FEL power when the.
P. Emma FAC Meeting 7 Apr Low-Charge LCLS Operating Point Including FEL Simulations P. Emma 1, W. Fawley 2, Z. Huang 1, C.
P. Emma, SLACLCLS Commissioning – Sep. 22, 2004 Linac Commissioning P. Emma LCLS Commissioning Workshop, SLAC Sep , 2004 LCLS.
P. Emma, SLACLCLS FAC Meeting - April 29, 2004 Linac Physics, Diagnostics, and Commissioning Strategy P. Emma LCLS FAC Meeting April 29, 2004 LCLS.
Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator.
Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Undulator Alignment.
BBA Related Issues Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Undulator.
E. Bong, SLACLCLS FAC Meeting - April 29, 2004 Linac Overview E. Bong LCLS FAC Meeting April 29, 2004 LCLS.
LCLS Transition to Science DOE Status Review of the LUSI MIE Project Near term opportunities for LCLS 'upgrades' J. Hastings for the LCLS Experimental.
RF Systems and Stability Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
Undulator Specifications Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
P. Emma, SLACICFA XFEL July 29, 2004 Electron Bunch Measurements with a Transverse RF Deflector P. Emma ICFA XFEL 2004 Workshop July 29, 2004 ICFA.
PAC2001 J. Rossbach, DESY 1 New Developments on Free Electron Lasers Based on Self-amplified Spontaneous Emission J. Rossbach, DESY Why SASE FELs? How.
Low Emittance RF Gun Developments for PAL-XFEL
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
R&D Towards X-ray Free Electron Laser Li Hua Yu Brookhaven National Laboratory 1/23/2004.
S2E in LCLS Linac M. Borland, Lyncean Technologies, P. Emma, C. Limborg, SLAC.
SPPS, Beam stability and pulse-to-pulse jitter Patrick Krejcik For the SPPS collaboration Zeuthen Workshop on Start-to-End Simulations of X-ray FEL’s August.
Linac Coherent Light Source Coherent Synchrotron Radiation Workshop
LCLS Accelerator SLAC linac tunnel research yard Linac-0 L =6 m Linac-1 L  9 m  rf   25° Linac-2 L  330 m  rf   41° Linac-3 L  550 m  rf  0°
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
The Future of Photon Science and Free-Electron Lasers Ingolf Lindau Lund University and Stanford University MAX-Lab and Synchrotron Light Research KTH,
Paul Emma Stanford Linear Accelerator Center July 2, 2002 Paul Emma Stanford Linear Accelerator Center July 2, 2002 High Brightness Electron Beam Magnetic.
Yujong Kim The Center for High Energy Physics, Korea DESY Hamburg, Germany Alternative Bunch Compressors.
Max Cornacchia, Paul Emma Stanford Linear Accelerator Center Max Cornacchia, Paul Emma Stanford Linear Accelerator Center  Proposed by M. Cornacchia (Nov.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
Max Cornacchia, SLAC LCLS Project Overview BESAC, Feb , 2001 LCLS Project Overview What is the LCLS ? Transition from 3 rd generation light sources.
John N. Galayda DESY October 8, LCLS Commissioning in 2008 J. Galayda, for The LCLS Construction/Commissioning.
Basic Energy Sciences Advisory Committee MeetingLCLS February 26, 2001 J. Hastings Brookhaven National Laboratory LCLS Scientific Program X-Ray Laser Physics:
P. Krejcik LINAC 2004 – Lübeck, August 16-20, 2004 LCLS - Accelerator System Overview Patrick Krejcik on behalf of the LCLS.
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
LCLS-II Particle Tracking: Gun to Undulator P. Emma Jan. 12, 2011.
UCLA Claudio Pellegrini UCLA Department of Physics and Astronomy X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/
PAC-2001, Chicago, IL Paul Emma SLAC SLAC Issues and R&D Critical to the LCLS UCLA LLNL.
S2E (start-to-end) Simulations at DESY T. Limberg TESLA Collaboration Meeting in Frascati, May 2003.
김 귀년 CHEP, KNU Accelerator Activities in Korea for ILC.
1 Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
T. Atkinson*, A. Matveenko, A. Bondarenko, Y. Petenev Helmholtz-Zentrum Berlin für Materialien und Energie The Femto-Science Factory: A Multi-turn ERL.
What did we learn from TTF1 FEL? P. Castro (DESY).
X-band Based FEL proposal
NLCTA Facility Capabilities E. R. Colby 5/18/09. NLCTA Overview RF PhotoInjector Ti:Sapphire Laser System Next Linear Collider Test Accelerator Cl. 10,000.
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
A single-shot method for measuring fs bunches in linac-based FELs Z. Huang, K. Bane, Y. Ding, P. Emma.
Applications of transverse deflecting cavities in x-ray free-electron lasers Yuantao Ding SLAC National Accelerator Laboratory7/18/2012.
SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Accelerator Physics Challenges of X-Ray FEL SASE Sources
Review of Application to SASE-FELs
Z. Huang LCLS Lehman Review May 14, 2009
Linac (WBS 1.2.2) Vinod Bharadwaj April 23, 2002
Design of Compression and Acceleration Systems Technical Challenges
Status of FEL Physics Research Worldwide  Claudio Pellegrini, UCLA April 23, 2002 Review of Basic FEL physical properties and definition of important.
LCLS Tracking Studies CSR micro-bunching in compressors
Gain Computation Sven Reiche, UCLA April 24, 2002
Motivation Technique Simulations LCLS LCLS DOE Review, April 24, 2002
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Introduction to Free Electron Lasers Zhirong Huang
Linac Design Update P. Emma LCLS DOE Review May 11, 2005 LCLS.
Enhanced Self-Amplified Spontaneous Emission
Electron Optics & Bunch Compression
Presentation transcript:

PAC-2001, Chicago, IL Paul Emma SLAC SLAC Issues and R&D Critical to the LCLS UCLA LLNL

PAC-2001, Chicago, IL Linac Coherent Light Source (LCLS) 14.3-GeV electrons14.3-GeV electrons 1-  m emittance1-  m emittance 230-fsec FWHM pulse230-fsec FWHM pulse 2  peak brightness *2  peak brightness * over 3 rd -gen. sources10 10 over 3 rd -gen. sources * photons/sec/mm 2 /mrad 2 /0.1%-BW add bunch compressors install 120-m undulator in ‘FFTB’ hall new RF-gun at 2-km point produce intense x-ray SASE radiation at 1.5 Å 4 th -Generation X-ray SASE FEL Based on SLAC Linac

PAC-2001, Chicago, IL Other FEL-based sources being tested, built, or planned…  Source Development Laboratory (SDL) at BNL-NSLS  Electron beam testing  VISA experiment at BNL-ATF  Saturation achieved, March 2001  FEL’s under study in Japan, Italy, England and Germany (BESSY II)  X-ray TESLA FEL at DESY (associated with linear collider)  TDR written  Harmonic Generation (HGHG) successful at BNL-ATF  Low Energy Undulator Test Line (LEUTL) at ANL-APS  High gain and saturation observed at 390 nm  TESLA Test Facility (TTF) at DESY  Lasing with gain ~3000 observed at nm

PAC-2001, Chicago, IL  Design Study Report published 1998 (SLAC-R-521) led by Max Cornacchia  New LCLS project leader at SLAC is John Galayda (formerly of ANL/APS)  Critical Decision-0 (CD-0) approval was signed by DOE in June 2001 LCLS Project Update  Pre-engineering in 2003, construction in 2004, and operation in 2007  Published plan for first 5 experiments (femto-chemistry, atomic physics, warm dense matter, …), Sep. 2000

PAC-2001, Chicago, IL  Acceleration and Compression  Undulator  X-ray optics  Injector Requirements LCLS Issues and R&D    1  m at 1 nC and 100 A  Stability <1 psec timing & <2% charge   -preservation  ‘CSR’ and wakefields  RF stability of 0.1°, 0.1% rms  Design, precise fabrication, and thermal stability  Trajectory alignment to <5  m  Undulator wakefields

PAC-2001, Chicago, IL Booster linac: 150 MeV Emittance: 1  m Charge: 1 nC Current: 100 A Booster linac: 150 MeV Emittance: 1  m Charge: 1 nC Current: 100 A Courtesy of J. Clendenin, M. Hernandez, J. Schmerge, SLAC RF Photo-Cathode 1.6-cell S-band Gun fullcell halfcell e.g., Cu photocathode ‘QE’  5  10  5 ‘QE’  5  10  5 Designed by: D. Palmer (SLAC) R. Miller J.N. Weaver X.-J. Wang (BNL) I. Ben-Zvi, K. Batchelor C. Pellegrini (UCLA) J. Rosenzweig K.-J. Kim (ANL) Pulse: 10 ps FW UV Energy: 0.1 mJ Wavelength: 266 nm Pulse: 10 ps FW UV Energy: 0.1 mJ Wavelength: 266 nm GTF UCLA eeee ~120 MV/m

PAC-2001, Chicago, IL diagnostic room Courtesy of J. Schmerge, SLAC diagnostics 3-m linac RF gun (GTF) in SSRL Injector Vault Gun Test Facility GTF Laser room GTF control room Injector vault Quadrupole magnets YAG screen LCLS Injector R&D

PAC-2001, Chicago, IL Emittance measured at 30 MeV with ‘quad-scan’ on YAG screen, varying charge and bunch length Q/nC  /  m 2 ps FWHM 4 ps FWHM Quad-scans on YAG screen, no space charge correction 4 ps FWHM GTF Emittance Measurements: Spring 2001 S. Gierman, J. Schmerge, SLAC LCLS requires: 10 ps FWHM Q = 1 nC  = 1  m LCLS requires: 10 ps FWHM Q = 1 nC  = 1  m more work ahead… BNL/ATF result May 2001: Q  0.5 nC   0.84  m V. Yakimenko et. al., FEL2001 no temporal pulse shaping yet 2 ps FWHM

PAC-2001, Chicago, IL L  6 m R 56  36 mm L  24 m R 56  22 mm L  66 m R 56 = 0 L  120 m L  9 m  rf  38° L  330 m  rf  43° L  550 m  rf  10° Linac-0 L  6 m LCLS Acceleration and Compression undulator 150 MeV  z  0.83 mm    0.10 % 250 MeV  z  0.19 mm    1.8 % 4.54 GeV  z  mm    0.76 % GeV  z  mm    0.02 % SLAC linac tunnel undulator hall...existing linac new Linac-3Lin-1Linac-2 BC1BC2 DL2 Linac-X L  0.6 m  rf =  X  Emittance control given coherent synchrotron radiation in bends  Adequate machine stability (RF, charge, bunch-timing, …) RFgun 2-km point in SLAC linac double chicane reduces CSR

PAC-2001, Chicago, IL After BC1  z = 227  m Non-linearity limits compression… …and spike drives CSR After BC1  z = 200  m distribution unchanged S-band RF curvature and T 566 non-linearity After S-band  z = 840  m …linearizer also reduces bunch length sensitivity to timing jitter x X-band X-band Similar scheme used at TESLA: DESY (P. Piot, et. al.) energy-time correlation X-band compensation  20 MV, 0.6 m long

PAC-2001, Chicago, IL V = 22 MV f = 11.4 GHz P = 30 MW L = 0.6 m  = 250 MeV And… Linearizer allows analytical modeling of wakes (~uniform pulses) and therefore fast, automated LCLS parameter optimization 0.5-Meter X-Band RF Accelerating Structure

PAC-2001, Chicago, IL 6D-Tracking using Parmela to 150 MeV and Elegant* to undulator, including:  Space charge (to 150 MeV)  Misalignments (RF, quads, BPMs)  2 nd -order optics  CSR and ISR  Long. And Trans. Wakefields  Resistive-wall wakefields  Steering  Emittance correction TRACKING energy profile energy-timetemporaltransverse * Elegant, by M. Borland 150 MeV 250 MeV 4.54 GeV 14.3 GeV 22  m 195  m 830  m 22  m 0.02%

PAC-2001, Chicago, IL Start-to-End Simulations M. Borland, WPPH103 LCLS Twiss parameters x ‘slice’ emittance gain length per slice Ming-Xiemethod BC1BC2undulator Corrected Trajectories includes wakes, CSR, 2 nd order,… CSR model is critical S. Reiche, WPPH MeV 14.3 GeV Time-sliced beam is input to Genesis-1.3, including centroid and rms of each slice in 6D

PAC-2001, Chicago, IL Stability Studies Pulse-to-pulse ‘jitter’ estimates based on repeated tracking including parameter variations M. Borland, WPPH103 More studies including CSR and 6D tracking in… 22  3  m rms bunch length variation 0  109 fsec rms arrival time variation linac  phase  0.1 deg-S rmslinac  phase  0.1 deg-S rms linac  voltage  0.1% rmslinac  voltage  0.1% rms Gun timing jitter 0.9 psecGun timing jitter 0.9 psec Charge jitter 2% rmsCharge jitter 2% rms linac  phase  0.1 deg-S rmslinac  phase  0.1 deg-S rms linac  voltage  0.1% rmslinac  voltage  0.1% rms Gun timing jitter 0.9 psecGun timing jitter 0.9 psec Charge jitter 2% rmsCharge jitter 2% rms R. Akre, TPAH105 Track 100k macro-particles in long.-2D 2000 times with ‘jitter’…

PAC-2001, Chicago, IL LEUTL CSR Measurements (ANL) energy spread [%] rms bunch length [ps] emittance [mm-mrad]  over-compression RF phase [deg-S] M. Borland, RPAH001 minimum compression Elegantmodel 3-screen data At end of LEUTL bunch compressor chicane Courtesy M. Borland, J. Lewellen, ANL Q  0.3 nC Using line-charge CSR model of Saldin, et. al.

PAC-2001, Chicago, IL built in 1960’s (G. Loew…) P. Krejcik, WPAH116 P. Emma, J. Frisch, P. Krejcik, G. Loew, X.-J. Wang V 0  15 MV  z  22  m, E  6 GeV eeee zzzz 2.44 m cccc pppp   90° V(t)V(t)V(t)V(t) xxxxRF‘streak’ S-band Transverse RF Deflector for Bunch Length Measurement V 0 = 20 MV  y  250  m  z  22  m y-z streak generated by deflector

PAC-2001, Chicago, IL Undulator Hall (FFTB) Install 122-m long planar undulator in existing FFTB hall Near hall Far hall UndulatorUndulator SLAC looking west Inside FFTB hall

PAC-2001, Chicago, IL QFQDBPM space for x- ray diagnostics undulator section 3.42 m Vanadium permendu r poles Nd-Fe-B magnets Undulator (ANL/APS) Beam Pipe: 5-mm ID 120-m Length undulator line length 122m undulator period, u 30mm undulator parameter, K 3.71 undulator section length 3.42m magnetic gap height 6.0mm No. of undulator sections 33 break length (short) 0.19m break length (long) 0.42m 1-  m BPM  cavity and button-type in compact package (G. Decker, ANL) E. Moog, TOPA012 Quad-magnets and undulator sections on independent movers eeee Planar hybrid type vacuum pump

PAC-2001, Chicago, IL Titanium strong- back Va permendur poles Nd-Fe-B magnets Courtesy E. Gluskin, ANL LCLS 9-Pole Prototype Undulator (ANL) E. Moog, TOPA012 Al temperature- compensation plate 3.4-m section is under construction at ANL

PAC-2001, Chicago, IL Simulate alignment procedure with many realistic errors: BPMs, quads, poles, … RON simulation shows saturation length increase by <1-gain length (R. Dejus, N. Vinokurov) Undulator Beam-Based Alignment  x > 500  m  x  1.5  m   100° S/m trajectory after 3 rd pass of BBA uncorrected trajectory S/m Quadrupole positions BPM read-back True trajectory BBA used at TTF-FEL: DESY (P. Castro, et. al.) beam size:  30  m

PAC-2001, Chicago, IL  Undulator wakefields alter energy profile along bunch during FEL amplification  Resistive-wall and surface- roughness wakes are important  Limits are tight (  E/E<0.1% rms) study roughness character with atomic force microscope using SS “A5” finish (Stupakov, et. al.) S. Reiche, WPPH119 G. Stupakov, SLAC microscopic surface finish Wakefields in Undulator Simulate SASE gain with Genesis including roughness and resistive- wall wakefields…  = 1.1 mm, I pk = 3.4 kA, Q = 1 nC Simulate SASE gain with Genesis including roughness and resistive- wall wakefields…  = 1.1 mm, I pk = 3.4 kA, Q = 1 nC ‘long’ aspect ratio of surface roughness is important 186-nm rms roughness 100  m 0.5  m resistive wake z [m] P [W] Courtesy S. Reiche, UCLA no wakes (25 GW) long bumps (500:1) (16 GW) short bumps (50:1) (10 GW)

PAC-2001, Chicago, IL  Intense x-ray interaction with matter X-ray Optics R&D  Attenuation cell (1  10  4 )  Experimental station needs  Theory, modeling  component survivability  diffraction exp’t FY01  Gases (N, Ar, Xe, …)  Differential pumping  Mirror optics  Crystal optics  Temporal compression  Focusing optics LCLS device is even smaller x-ray collimating and focusing optics from smooth mandrel & sputtered W-Re

PAC-2001, Chicago, IL Radiation damage interferes with atomic positions and the atomic scattering factors Janos Hajdu Motivation for even shorter x-ray pulses  t /fsec Further e  compression difficult:  CSR in bends  Undulator wakefields Coulomb Explosion of Lysozyme (50 fs) Compress x-ray pulse with chirp & slicer (R. Bionta, LLNL) …or… …or…

PAC-2001, Chicago, IL Two-stage undulator for shorter pulse 52 m 43 m eeee 30 m SASE gain (P sat /10 3 ) SASE Saturation (23 GW) Si monochromator (T = 40%) time Energy C. Schroeder, WPPH121 time Energy  E FW /E = 1.0% time  t FW = 230 fsec x-ray pulse 1.0  10  4 time  t FW < 10 fsec Mitigates e  energy jitter and undulator wakes Also a DESY scheme which emphasizes line-width reduction (B. Faatz) UCLA

PAC-2001, Chicago, IL 4-m undulator in ATF at BNL for SASE R&D at 830 nm Wavelength 840 nm Pulse Energy vs Position 16 March 2001 VISA Preliminary results (unpublished) showing large gain (2  10 7 ) in SASE FEL radiation and evidence of saturation at 840 nm. Visible to Infrared SASE Amplifier LCLS Collaboration Data points taken along undulator Onset of saturatio n Wavelength840nm Average Charge170 pC Measured Projected Emittance:1.7  m Energy Spread0.07 % Gain Length18.7 cm Total Gain2×10 7 Wavelength840nm Average Charge170 pC Measured Projected Emittance:1.7  m Energy Spread0.07 % Gain Length18.7 cm Total Gain2×10 7 Pop-In Diagnostics BNL-LLNL-SLAC-UCLA eeee A. Tremaine, WPPH122 A. Murokh, A. Murokh, WPPH118

PAC-2001, Chicago, IL New proposal for:  LCLS accelerator and x-ray optics R&D  Ultra-short x-ray science program at SLAC 28 GeV Add 12-meter chicane compressor in linac at 1/3-point (9 GeV) Damping Ring (   30  m) 9 ps 0.4 ps 80 fs 50 ps SLAC Linac 1 GeV GeV FFTB RTL 30 kA 80 fsec FWHM 1.5% Short Bunch Generation in the SLAC Linac Compress to 80 fsec in 3 stages Existing bends compress to <100 fsec ~1 Å 10-m undulator P. Emma, P. Emma, FPAH165 Add to understanding of CSR and X-ray optics

PAC-2001, Chicago, IL  Emittance generation and preservation Summary of Key Issues  Stable operation  Undulator errors and trajectory control  Gun   1  m, repeatable at 120 Hz  Need better understanding of CSR  RF, laser, and feedback systems  Fabrication, alignment, and BPMs  Wakefields  SASE saturation at ~1Å