Results of NEMO 3 and status of SuperNEMO Ladislav VÁLA on behalf of the NEMO 3 and SuperNEMO collaborations Institute of Experimental and Applied Physics.

Slides:



Advertisements
Similar presentations
NEMO-3 experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Coseners House, Abingdon.
Advertisements

SuperNEMO Thoughts about next generation NEMO experiment Ruben Saakyan UCL.
Double Beta Decay review
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Vladimir Vasiliev, UCL 2-6 May ’06, Stockholm on behalf of NEMO and SuperNEMO collaborations NEMO.
COBRA Kai Zuber University of Sussex 5 th SNOLAB Workshop,
 NEMO-3 Detector  Preliminary results Performance of the detector  analysis for 100 Mo, 82 Se and 150 Nd  Background study for  research ( 208.
M. Dracos 1 Double Beta experiment with emulsions?
GERDA: GERmanium Detector Array
NEMO-3 Experiment Neutrino Ettore Majorana Observatory
No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay.
Low radioactivity at the Modane Underground Laboratory
The SuperNEMO experiment A very low background experiment Jérémy ARGYRIADES, LAL Orsay.
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
First results from NEMO 3 Experiment V. Vasiliev (ITEP), H. Ohsumi (Saga) and Ch. Marquet Nara, Japan, June 2003 NEMO collaboration.
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
Warsaw - NEMO initiative group Zenon Janas for Search for neutrinoless double  decay in NEMO-3 and SuperNEMO experiments Warszawa,
NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)
ZSJ IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymentach NEMO-3 i SuperNEMO Kraków,
Status of R&D of the SuperNEMO experiment Gwénaëlle Broudin-Bay LAL Orsay GDR neutrino – Bordeaux – Oct
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
19 July 2012Page 1 Neutrino Mass Julia Sedgbeer High Energy Physics, Blackett Laboratory.
SuperNEMO Simulations Darren Price University of Manchester July, 2005.
Recent Results of the NEMO 3 Experiment Ladislav VÁLA Czech Technical University in Prague NOW2006, 9 th – 16 th September 2006, Conca Specchiulla, Italy.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
Probing neutrino mass with SuperNEMO Ruben Saakyan Ulisse at LSM Workshop 30 June 2008.
Status of the Se82 project Selenium production and purification JRA2-ILIAS Prague, April 20th, 2006, IDEA-N4 meetingDominique Lalanne.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory FIRST RESULTS Xavier Sarazin 1 for the NEMO-3 Collaboration CENBG, IN2P3-CNRS et Université de Bordeaux,
Neutrino Ettore Majorana Observatory
Yu. Shitov, Imperial College, London  From NEMO-3 to SuperNEMO  Choice of nucleus for measurments  Calorimeter R&D  Low background R&D  Tracker R&D.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
Zakład Spektroskopii Jądrowej IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymencie NEMO-3 Warszawa,
1 TAUP - September 7, 2015S. Blot Investigating ββ decay with NEMO-3 and SuperNEMO Summer Blot, on behalf of the NEMO-3 and SuperNEMO experiments 7 September.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
VIeme rencontres du Vietnam
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
IOP HEPP Matthew Kauer Double beta decay of Zr96 using NEMO- 3 and calorimeter R&D for SuperNEMO IOP HEPP April Matthew Kauer UCL London.
NEMO3 analysis and SuperNEMO development Benjamin Richards D14.
ILIAS JRA2 : WG1+WG2 Se82, production and purification Cascina, November 3rd, 2005Dominique Lalanne.
Neutrino Ettore Majorana Observatory
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
1st Year Talk1 PEP Violation Analysis with NEMO3 and Calorimeter R&D for SuperNEMO Anastasia Freshville.
By Matthew Kauer First Year Report – 15 June 07 Measurement of 2b2ν Half-Life of Zr96 and Lightguide Studies for SuperNEMO Calorimeter Matthew Kauer UCL.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
1 Study of 48 Ca Double Beta Decay by CANDLES T. Kishimoto Osaka Univ.
Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Nasim Fatemi-Ghomi, Group Christmass Meeting December Nasim Fatemi-Ghomi Double Beta Decay Study of 150 Nd at NEMO3 (The magic isotope!!)
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
DPF-JPS 2006 Oct 31, Hawaii 1 CANDLES system for the study of 48-Ca double beta decay T. Kishimoto Osaka Univ.
P. CermakRez near Prague, December 2005 EC/EC process measurement in TGV experiment For TGV collaboration: JINR Dubna, Russia CTU Prague, Czech Republic.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
09/04/2006NDM061 CANDLES for the study of 48 Ca double beta decay OGAWA Izumi ( 小川 泉 ) Osaka Univ. ( 大阪大学 )
Calor 2010Anastasia Freshville1 SuperNEMO Calorimetry Anastasia Freshville (On behalf of the SuperNEMO Collaboration) Calor2010 – 12 th May.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
SuperNEMO collaboration
Measurement of surface radioactivity by Alpha/Beta detection
Double Beta Decay of 48Ca with CaF2(Eu) - ELEGANT VI -
SuperNEMO 1st Report to Oversight Committee
Nu_2-WP3: R&D for neutrinoless double beta decay experiments
Search for 0nbb decay with SuperNEMO
• • • Ge measurements for SuperNEMO
Double Beta experiment with emulsions?
Presentation transcript:

Results of NEMO 3 and status of SuperNEMO Ladislav VÁLA on behalf of the NEMO 3 and SuperNEMO collaborations Institute of Experimental and Applied Physics Czech Technical University in Prague NOW 2008, 6 – 13 September 2008, Conca Specchiulla, Italy

 Brief introduction –  decay  NEMO 3 – description and results  SuperNEMO – current status  Summary Outline Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

In even-even nuclei where single   decay is highly suppressed or forbidden but     decay is possible, e.g. 48 Ca, 76 Ge, 82 Se, 96 Zr, 100 Mo, 116 Cd, 130 Te, 136 Xe, 150 Nd,… 100 Mo Ru keV 100 Tc 1+1+ Double beta decay  2 = (T 1/2 ) -1 = G 2 (Q  11,Z) |M 2 | 2 G 2 – phase space factor M – nuclear matrix element Two-neutrino  decay (2  ): (A,Z)  →  (A,Z+2) + 2 e  + 2 e Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Neutrinoless  decay (0  ): (A,Z)  →  (A,Z+2) + 2 e   0 = (T 1/2 ) -1 = G 0 (Q  5,Z) |M 0 | 2  m  2 G 0 – phase space factor M – nuclear matrix element  m  = |  j |U e j | 2 e i  j m j | – effective neutrino mass Energy sum of the electrons Beyond SM  L = 2, Majorana neutrinos  with mass > 0 Can be due to: light neutrino exchange  m , right-handed currents, Majorana emission, SUSY particle exchange

Calorimetry plus tracking Detection of both electrons: reject unknown nuclear gamma lines Three kinematic observables: study underlying physics mechanism (i) individual electron energies (ii) angular correlation (iii) energy sum Sources separated from the detector: measure T 1/2 for several isotopes Background rejection through particle identification: e –, e +, ,  particles Unique and complementary NEMO experimental approach Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

Modane Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Detector located in the LSM Modane underground laboratory, France (4800 m.w.e.) Source: 10 kg of  isotopes, cylindrical, S = 20 m 2, foils ~ 60mg/cm 2 Tracking detector: drift wire chamber operating in Geiger mode (6180 cells) gas = 94% He + 4% ethyl alcohol + 1% Ar + 0.1% H 2 O Calorimeter: 1940 plastic scintillators coupled to low radioactivity PMTs NEMO 3 detector NEMO = Neutrino Ettore Majorana Observatory B (25 G) 4 m 20 sectors 3 m 6 m Magnetic field: 25 Gauss Gamma shield: pure iron (18 cm layer) Neutron shield: borated water (ext. wall, 30 cm layer) & wood (top and bottom, 40 cm layer) Surrounded by an anti-radon tent supplied with Rn-free air from an anti-radon factory identification of e –, e +,  and  -particles

116 Cd 405 g Q  = 2805 keV 96 Zr 9.4 g Q  = 3350 keV 150 Nd 37.0 g Q  = 3367 keV 48 Ca 7.0 g Q  = 4272 keV 130 Te 454 g Q  = 2529 keV nat Te 491 g Cu 621 g 2  decay measurement External background measurement 100 Mo kg Q  = 3034 keV 0  decay search 82 Se kg Q  = 2995 keV & NEMO 3 sources All sources produced by centrifugation in Russia Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

Deposited energy: E 1 + E 2 = 2088 keV Internal hypothesis: (  t) mes – (  t) theo = 0.22 ns Common vertex: (  vertex)  = 2.1 mm (  vertex) // = 5.7 mm Run Number: 2040 Event Number: 9732 Date: Mo foils Scintillator + PMT Longitudinal view Transverse view Vertex of the e  e  emission  event reconstruction Criteria to select  events: 2 tracks with charge < 0 2 PMTs, each > 200 keV PMT-Track association Common vertex Internal hypothesis TOF (external event rejection) No other isolated PMT (  rejection) No delayed  track ( 214 Bi rejection) Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

Results for 2  of 130 Te Preliminary result: 130 Te:T 1/2 = [ 7.6 ± 1.5 (stat) ± 0.8 (syst) ]  y Preliminary result: 130 Te:T 1/2 = [ 7.6 ± 1.5 (stat) ± 0.8 (syst) ]  y S + B = 607 events 109 events 454 g 534 days S/B = 0.25 background subtracted NEMO-3 Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Energy sum of the electrons

Cut at 1.5 MeV E 1 + E 2 (MeV) Preliminary results: T 1/2 (2  ) = [ (stat) ± 0.4 (syst)] × y T 1/2 (0  ) > 1.3 × y (90% C.L.)  m  < 29.6 eV (90% C.L.), eff. 22% Preliminary results: T 1/2 (2  ) = [ (stat) ± 0.4 (syst)] × y T 1/2 (0  ) > 1.3 × y (90% C.L.)  m  < 29.6 eV (90% C.L.), eff. 22% 133 events 7g 948 days S/B = 6.76 NEMO-3 New results for 48 Ca Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 NEMO-3 Angular distribution High bkg here due to contamination with 90 Sr Energy sum of the electrons Cut at 0 NME: E. Caurrier et al., Phys. Rev. Lett. 100 (2008)

New results for 96 Zr Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 [1] M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) (R). [2] M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) [3] F.Šimkovic et al., Phys.Rev. C 77 (2008) NME: 9.4 g 925 days S/B = 1 NEMO-3 Angular distribution Energy sum of the electrons Preliminary results: T 1/2 (2  ) = [2.3 ± 0.2(stat) ± 0.3 (syst)] × y T 1/2 (0  ) > 8.6 × y (90% C.L.)  m  < (7.4 – 20.1) eV [1–3] Preliminary results: T 1/2 (2  ) = [2.3 ± 0.2(stat) ± 0.3 (syst)] × y T 1/2 (0  ) > 8.6 × y (90% C.L.)  m  < (7.4 – 20.1) eV [1–3]

New results for 2  of 150 Nd Preliminary result: 150 Nd:T 1/2 = [ (stat) ± 0.73 (syst) ]  y Preliminary result: 150 Nd:T 1/2 = [ (stat) ± 0.73 (syst) ]  y Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Angular distributionEnergy sum of the electrons

0  results for 150 Nd 2  bkg + radioactive bkg MC radioactive bkg MC 0  MC (T 1/2 = 1.45×10 22 y) 150 Nd Above 2.5 MeV 28.6 ± 2.7 events expected from background 29 events observed Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Light neutrino exchange: LEP CLs statistical method above 2.5 MeV Detection efficiency: 19% NME: V.A. Rodin et al., Nucl. Phys. A 766 (2006) 107. Previous result: T 1/2 > 1.7 × y (90% CL) A.A. Klimenko et al., Nucl. Instr. Meth. B 17 (1986) 445. Right-handed currents: Emission of Majoron (M1): T 1/2 (0  ) > 1.45 × y (90% CL)  m  < 3.7 – 5.1 eV T 1/2 (0  ) > 1.45 × y (90% CL)  m  < 3.7 – 5.1 eV T 1/2 (0  ) > 1.27 × y (90% CL) T 1/2 (0  ) > 1.55 × y (90% CL)

[1] M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) (R). [2] M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) [3] V.A.Rodin et al., Nucl.Phys. A 793 (2007) 213. NME: Results for 100 Mo and 82 Se 693 days of data, Phase I + Phase II (data until spring 2006) Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 NEMO Mo NEMO-3 82 Se T 1/2 (2  ) = [ 7.11 ± 0.02 (stat) ± 0.54 (syst) ]  y (Phys. Rev. Lett. 95 (2005) ) T 1/2 (0  ) > 5.8 × y (90% CL)  m  < (0.8 – 1.3) eV [1–3] T 1/2 (2  ) = [ 7.11 ± 0.02 (stat) ± 0.54 (syst) ]  y (Phys. Rev. Lett. 95 (2005) ) T 1/2 (0  ) > 5.8 × y (90% CL)  m  < (0.8 – 1.3) eV [1–3] T 1/2 (2  ) = [ 9.6 ± 0.3 (stat) ± 1.0 (syst) ]  y (Phys. Rev. Lett. 95 (2005) ) T 1/2 (0  ) > 2.1 × y (90% CL)  m  < (1.4 – 2.2) eV [1–3] T 1/2 (2  ) = [ 9.6 ± 0.3 (stat) ± 1.0 (syst) ]  y (Phys. Rev. Lett. 95 (2005) ) T 1/2 (0  ) > 2.1 × y (90% CL)  m  < (1.4 – 2.2) eV [1–3]

0  decay search expected sensitivities in 2010: 100 Mo T 1/2 (0  ) > 2 × y (90 % CL)  m  < (0.4 – 0.7) eV 82 Se T 1/2 (0  ) > 8 × y (90 % CL)  m  < (0.7 – 1.1) eV Collaboration decided to perform blind analysis Analysis is now under way Results will be ready soon Data acquisition with NEMO 3 until the end of 2010 Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 [1] M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) (R). [2] M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) [3] V.A.Rodin et al., Nucl.Phys. A 793 (2007) 213. NME:

From NEMO 3 to SuperNEMO N 90 A T 1/2 (0  ) > ln 2  M    T obs NA NA  AN excluded Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September kg 100 – 200 kg isotope mass M 8 % ~ 30 % isotope 100 Mo 150 Nd or 82 Se NEMO 3SuperNEMO internal contamination 208 Tl and 214 Bi in the  foil A( 208 Tl): < 20  Bq/kg A( 214 Bi): < 300  Bq/kg A( 208 Tl) < 2  Bq/kg if 82 Se: A( 214 Bi) < 10  Bq/kg T 1/2 (0  ) > 2 × y  m  < (0.3 – 0.6) eV T 1/2 (0  ) > 2 × y  m  < (50 – 100) meV energy resolution (FWHM) 3 3 MeV efficiency 

SuperNEMO Collaboration ~ 90 physicists, 12 countries, 27 laboratories Morocco Fes U United Kingdom UCL U Manchester Imperial College France CEN Bordeaux IPHC Strasbourg LAL ORSAY LPC Caen LSCE Gif s/Yvette Spain U Valencia U Zaragoza U Barcelona USA MHC INL (U Texas) Russia JINR Dubna ITEP Moscow Kurchatov Institute Japan U Saga KEK U Osaka Slovakia (U Bratislava) Ukraine INR Kiev ISMA Kharkov Czech Republic Charles U Prague CTU Prague Poland U Warszawa Finland U Jyväskylä Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

SuperNEMO preliminary design Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Planar geometry Source (40 mg/cm 2 ) 12 m 2, tracking volume (~ 3000 channels) and calorimeter (~ 1000 PMT) Modular (~ 5 kg of enriched isotope/module) 100 kg: 20 modules ~ channels for drift chamber ~ PMT channels (3000 if bar design) Top view 5 m 1 m Side view 4 m

February 2006 – July 2009 Approved in UK, France and Spain. Smaller but vital contributions from USA, Russia, Czech Republic, Japan. Main tasks and deliverables: –R&D on critical components Calorimeter energy resolution of 4% at 3 MeV Optimisation of tracking detector and construction (robot) Better background rejection (e.g. extra veto counters) Ultrapure source production and purity control Simulations and geometry optimisation (B-field question) –Technical Design Report –Experimental site selection (Modane, Canfranc, Gran Sasso) SuperNEMO design study Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

Choice of isotope Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Choice of nucleus depends on: enrichment possibilities high Q  value phase space factor G 0 2  half-life purification of 4 kg of 82 Se underway (INL, USA) enrichment of 150 Nd possible in France (MENPHIS facility at CEA – Atomic Vapour Laser Isotope Separation) = G  M   m  2 2 T 0 1 Two main options: 150 Nd 82 Se Q  (MeV) G 0 (y -1 eV -2 ) 8× Se obtained by centrifugation. Impossible for 150 Nd, only laser enrichment.

Calorimeter R&D Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Energy resolution is a combination of energy losses in the foil and calorimeter  E/E Goal: FWHM  7%/  E  4% at 3 MeV Studies – Material: organic (plastic or liquid) – Geometry and shape (block or bar) – Size – Reflective coating – PMTs (Photonis, Hamamatsu, ETL) High QE Ultra-low background

Calorimeter R&D status Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Focus on large block studies (~ 20 cm, 8” PMT) Four routes pursued – 8” PMT + plastic block – 8” PMT + liquid scintillator – 8” PMT + hybrid (liquid + plastic) scintillator – 2 m scintillator bar with 3” or 5” PMTs PMTs – Working closely with manufacturers: Hamamatsu, Photonis, ETL – Real breakthrough in high-QE PMTs from Hamamatsu, Photonis: 43% QE from 3’’ PMTs, now working on 8’’ – Deep involvement in ultra-low background PMT development (especially Photonis) 8% at 1 MeV achieved with 20 cm blocks, standard PMT (27% QE) and reflectors Extrapolating the above improvements gives 7% but must be tested once all components are in hand Plan B: 3”/5” high QE PMTs and larger number of channels Decision on calorimeter design in December 2008

Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Optimise operating parameters: – wire length and diameter – wire material, gas mixture – readout Several single cells, two 9-cell prototypes built and tested 90-cell prototype is being built 9-cell prototype in Manchester Tracker R&D Drift cell working in Geiger mode (Geiger cell) ■ Transverse position from electron drift times ■ Longitudinal position from plasma propagation times

Tracker automated wiring Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 About wires to be strung, crimped, terminated Wiring robot is being developed at Mullard Space Science Lab (UCL) Pair of end fittings Anode wire feed mechanism Clamp mechanism

Radiopurity measurement Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Tracking (wire chamber) Scintillator + PMT Source foil to be measured e–e–  Prompt e –, T 0 Delayed  T 1/2 ~ 300 ns, E deposited ~ 1 MeV Radon + neutron +  shield BiPo detector to measure contaminations of 208 Tl and 214 Bi in source foils before installation in SuperNEMO Goal: ~ 5 kg of foil (12 m 2, 40 mg/cm 2 ) in one month with a sensitivity of A( 208 Tl) < 2  Bq/kg & A( 214 Bi) < 10  Bq/kg Background < 1 event/month!   (164  s)   (300 ns) 232 Th 212 Bi (60.5 mn) 208 Tl (3.1 mn) 212 Po 208 Pb (stable) 36% 238 U 214 Bi (19.9 mn) 210 Tl (1.3 mn) 214 Po 210 Pb 22.3 y 0.021% Bi-Po process

BiPo-1 capsule BiPo-1 capsule BiPo-1: 18 capsules in operation in LSM Modane since February 2008 current sensitivity A( 208 Tl) < 5 µBq/kg BiPo-2 and Phoswhich: installed in LSM Modane and running since July 2008 results expected by the end of 2008 BiPo-2 Set of BiPo-1 capsules Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Radiopurity measurement

NEMO 3 running Running full detector in 2014 Target sensitivity (0.05 – 0.1 eV) in 2016 Construction of 20 modules SuperNEMO modules installation at new LSM BiPo installation BiPo Canfranc 1 – 5 SuperNEMO modules running at Canfranc 2014 SuperNEMO schedule Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 BiPo1 Canfranc/LSM BiPo construction Construction of 20 modules Preparation of new LSM site SuperNEMO 1 st module construction SuperNEMO design study

Summary NEMO 3  Unique approach combining tracking and calorimetry  2  factory  precise T 1/2 measurement for 7 isotopes: new results for 48 Ca, 96 Zr, 130 Te and 150 Nd  0  of 100 Mo & 82 Se: blind analysis of Phase 2 data under way  Data taking until the end of 2010  Ideal test bench for SuperNEMO SuperNEMO  3 year design study addresses most critical issues: calorimeter resolution, tracker optimisation, radio-purity  Based on design study results full proposal for 100+ kg detector in 2009  Start-up in stages due to modular approach: first module by 2010/11, all 20 modules ~ 2013  Target sensitivity 50 – 100 meV by 2016 Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

Backup slides Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

 isotope foils scintillators PMT calibration tube cathode rings (wire chamber) iron shielding coil water tank Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

1 ton of –50 o C, 9 bars air flux = 150 m 3 /h Input: A( 222 Rn) 15 Bq/m 3 Output: A( 222 Rn) < 15 mBq/m 3 !!! reduction factor of 1000 Phase I : February 2003 – September 2004 (radon background in data) ~ 1 0 -like event/y/kg with 2.8 < E 1 +E 2 < 3.2 MeV Radon background for 0  search is then negligible for Phase 2 Radon background for 0  search is then negligible for Phase 2 Radon trapping facility Inside the NEMO 3 tent: factor of 100 – 300 Inside NEMO 3: factor of 10 A( 222 Rn)  2 mBq/m 3 Phase II : since October 2004 (radon level reduced by a factor of 10)   (164  s) 238 U 214 Bi (19.9 mn) 210 Tl (1.3 mn) 214 Po 210 Pb (22.3 y) 0.021% Bi-Po process Bq/m 3 Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

T 1/2 = [ 7.11 ± 0.02 (stat) ± 0.54 (syst) ]  y Phys. Rev. Lett. 95 (2005) T 1/2 = [ 7.11 ± 0.02 (stat) ± 0.54 (syst) ]  y Phys. Rev. Lett. 95 (2005) events 6914 g 389 days S/B = 40 cos(  ee ) ● Data 2 MC simulation Background subtracted Angular distribution ● Data 2 MC simulation Background subtracted events 6914 g 389 days S/B = 40 E 1 + E 2 (MeV) Energy sum of the electrons Phase I data (February 2003 – October 2004) with radon 2  decay of 100 Mo Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Now we have 0.5M events and the result will be updated later this year NEMO-3

T 1/2 = [ 9.6 ± 0.3 (stat) ± 1.0 (syst) ]  y Phys. Rev. Lett. 95 (2005) T 1/2 = [ 9.6 ± 0.3 (stat) ± 1.0 (syst) ]  y Phys. Rev. Lett. 95 (2005) events 932 g 389 days S/B = 4 ● Data 2 MC simulation Background subtracted E 1 + E 2 (MeV) Phase I data (February 2003 – October 2004) with radon 2  decay of 82 Se Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 NEMO-3 Energy sum of the electrons

External background 208 Tl (PMTs) Measured with (e   ) external events ~  -like events y -1 ·kg -1 with 2.8<E 1 + E 2 <3.2 MeV ~  -like events y -1 ·kg -1 with 2.8<E 1 + E 2 <3.2 MeV 208 Tl impurities inside the foils Measured with (e  2  ), (e  3  ) events coming from the foil External neutrons and high energy  ’s Measured with (e  e  ) int events with E 1 +E 2 > 4 MeV   -like events y -1 ·kg -1 with 2.8<E 1 + E 2 <3.2 MeV NEMO 3 can measure each component of its background! 100 Mo 2  decay T 1/2 = 7.1 × y ~  -like events y -1 ·kg -1 with 2.8<E 1 + E 2 <3.2 MeV Background measurement in NEMO 3 Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

Future extension of LSM Modane lab Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

Main Hall 40 × 15 m (h=11 m) RAILWAY TUNNEL ROAD TUNNEL Ultra-Low background Facility 15 × 10 m (h=8 m) Old Laboratory 20 × 5 m (h=4.5 m) installations, clean rooms & offices Access gallery Characteristic of the new LSC Depth900 m (2450 mwe) Main experimental hall 600 m 2 (oriented to CERN) Low background lab 150 m 2 Clean room45 m 2 (100/1000 type) General services 135 m 2 Offices80 m 2 - BiPo - SuperNEMO - Dark matter - … New LSC Canfranc laboratory Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

150 Nd laser enrichment Vaporised isotope mixture Laser beam Enriched U collecting plate Depleted U collecting plate AVLIS: Atomic Vapour Laser Isotope Separation Selective photo-ionisation: based on isotope shifts in the atomic absorption optical spectra U + 3 selective photons → 235 U + + e – 150 Nd enrichment is technically possible MENPHIS facility (CEA/Pierrelatte - France)

Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September kg of 2.5% enriched Uranium produced MENPHIS AVLIS facility Facility stopped in 2003 Principal agreement by CEA to suspend closure/dismantling 150 Nd enrichment collaboration formed. SuperNEMO and SNO++ plus other interested parties Phased approach –Feasibility studies for high degree enrichment (> 50%) –~ kg production and tests –100+ kg production