Chapter 11 Ischemia- reperfusion injury Zhao Mingyao BMC.ZZU
1955, Sewell ligated coronary artery of dog, restore blood flow after deligation. What happened ? Brief history Simple phenomenon
Clinical : Shock, DIC Bypass surgery Fibrinolytic therapy Cardiopulmonary operation Organ transplantation
Concept of Ischemia-Reperfusion Injury The restoration of blood flow after transient ischemia may induce further reversible or irreversible cellular injury
Features of IRI : 1. reversible irreversible 2. Massive in organs 3.participating factors oxygen paradox calcium paradox pH paradox
Without O 2 Normal O2 supply Without Ca 2+ with Ca 2+ Deteriorate injury Acidosis Correcting acidosis effect Perfusion fluid pH paradox Ca 2+ paradox O 2 paradox
Section 1 Etiology of IRI 1. Duration of ischemia 2. Dependency on O 2 supply 3. The condition of reperfusion: reperfusion pressure, speed, T, Na +, Ca 2+, K +, Mg 2+
Effect of Ischemic time on perfusion arrhythmia of rat Ischemic time incidence rate
Section 2 mechanism of IRI
Part 1. Injury of free radicals
Concept and Types of FR Free radicals are atoms or molecules with unpaired electrons in their outer orbital 1.Non-lipid free radicals 2.Lipid free radicals
(1) Oxygen free radical ( OFR) ---Induced by O2 Rective Oxygen Species (ROS) OFR H 2 O 2 Types O· - 2 OH· 1 O 2 Classification peroxynitrite
(2) Lipid radicals types : L· LO· Alkoxyl LOO· (3)Cl· 、 CH 3 · (Methane ) 、 NO ·
1. Generation of free radical 1) Initiation 2) Propagation 3) Degradation
(1)Production and scavenging of OFR 1) Origin of O· - 2 : ① Mt ② Natural oxidation of some substances ③ Enzyme catalysis ④ Toxin acting on cell
2 ) Production process of OFR Single electron reduction O 2 + e O 2 O 2 + 2e + 2H + H2O2 H2O2 H2O2H2O2 O e + 3H + HO + H 2 O O e + 4H + 2 H 2 O Cytaa 3 SOD nse Single electron reduction of O 2
Haber-Weiss reaction (without Fe 2 ) O 2 - + H 2 O 2 O 2 + OH +OH SLOW
Fenton type of Haber-Weiss reaction ( with Fe 3 ) O 2 - + H 2 O 2 O 2 + OH +OH Fast Fe 2 What significance ???
3 ) Scavenging of OFR ① Low molecule scavenger ② Enzymatic scavenger Water-soluble Lipid-soluble
① low molecule scavenger *hydrofacies of intra- or extracell: Cysteine 、 Vit C 、 Glutathione *Cellular lipid : Vit E 、 Vit A Cytosol : NADPH
② Enzymatic scavenger Catalase (CAT) Glutathione peroxidase (GSH-Px) Superoxide dismutase (SOD)
Dismutation reaction Single electron reduction of O 2 2O 2 + 2H + H 2 O 2 + O 2 H2O2H2O2 SOD nse ?
GSH-Px : containing selenium scavenging large biological molecule peroxide LOOH + 2GSH GSSG + LOH + H 2 O GSSG + NADPH + H + 2GSH + NADP + GSH-Px GSH reductase
(2) Mechanism of OFR ↑during IRI
1) Mitochondria pathway Ca 2+ enter Mt Single electron reduction of O2 ↑ O - 2 · ↑ hypoxia MnSOD
Xanthine oxidase (XO )10% xanthine dehydrogenase(XD) 90% Ca 2 + sensitive enzyme 2) Xanthine oxidase(XO) pathway↑
Ischemia: ATP degradation Hypoxathine↑↑ Reperfusion: (1)Ca 2+ →protease XO ( 2 ) restore O 2 xanthine + O· H 2 O 2 O· H 2 O 2 + uric acid O2O2 O2O2 XD OH · XO role in formation of OFR
3)Neutrophil pathway NADH(I) NADPH(II) + O 2 NADPH oxidase H + + O - 2 ·+H 2 O 2 NADH oxidase C 3,LTB 4 Activates NP hexose bypass activation Respiratory burst
4) Catecholamine autooxidation pathway Adr Methyl transferase monoamine oxidase Vanillylmandelic acid (VMA) Renal excretion 80% during stress adrenochrome O 2 - ·
(3) The detrimental effects of OFR to tissue 1 ) Lipid membrane 2 ) Protein: channel, pump, 3 ) Enzyme 4 ) Nuclear acid : DNA
Membrane lipid peroxidation
Protein break Protein ~ -S-S- CH 3 -S- Lipid-lipid ~ O Two sulfur ~ Lipid –pro ~ Amino acid oxidation OH HO fatty acid oxidation OH HO MDA released by oxidated fatty acid Biomacromolecle crosslinkage Malondialdehyde (MDA)
DNA disruption and chromosome aberration induced by OH about 80% damage OH (hydroxyl)
Part 2 Calcium overload
1. Ca 2+ transportation and distribution Na + - Ca 2+ cotransportor Ca 2+ pump Ca 2+ binding Pr Mt SR Ca 2+ Ca 2+ Channel
2. Mechanism of ~ ① Na + - Ca 2+ exchange↑: H + -Na + ↑; Na + - Ca 2+ ↑(forward mode reverse mode); PKC triggers ② ATP ↓: mitochondria damage, energy precursor ↓ ③ Membrane permeability ↑ ④ catecholamine ↑
α1α1 NE GqPLC P1P1 IP 3 Ca 2+ SR DG PKC H+H+ Na + Ca 2+ filament PKC activating Na + /Ca 2+ exchanger indirectly
3. The detrimental effects of Ca 2+ overload to tissue (1) Activating Ca 2+ -activated protease (2) Defects in membrane permeability activating phospholipase A 2 OFR (3) Hypercontracture and reperfusion arrhythmia cellular electrical action (4)Mitochondria damage
Part 3. The endothelial injury and neutrophil activation
1.The role of neutrophil activated ① Swelling ② Adhesion ③ Infiltration ④ Release: arachidonic acid, PAF, lysosomal enzyme ⑤ Respiratory burst ⑥ Cell adhesion molecules(CAM): selectins, integrins, immunoglobulin superfamily
2. Mechanism of no-reflow phenomenon Vaso-endothelial damage Vaso-endothelial edema Occlusion of microvascular luman
Rulo: 肉膜
3.NO and ONOO - production NO in VEC(eNOS), little, physiological NO in inflammatory cell(iNOS), rich, cytotoxic (Mt respiration, aconitase activity, DNA synthesis) and OONO - peroxynitrite
Free radicals with a nitrogen center ① Nitric oxide(NO) NADP + O2O2 NADPH L-arginine L-citrulline + NO NOS
② Peroxynitrite, ONOO - NO+O 2.- ONOO - H2OH2O NO 2. + OH. + H + acidic Killing bacterial & tumor
Protein rupture Pro-pro linkage -S-S- CH 3 -S- O disulfide linkage Lipid-pro linkage Oxidation of AA Inhibit function of protein: lipid-protein- collagen linkage
OFR Ca 2+ VEC -NP ? Ca 2+ overload results in cellular death Brief summary Change of metabolism & energy
Section 3 Body change during IRI
1. Heart ( 1 ) Reperfusion arrhythmia ATP-sensitive K + channel open: hyperpolarization long chain acylcarnitines & lysophospholipids released reduced conduction velocity
AP shortening + conduction slowing = re-entrant arrhythmia Generation of ectopic beats
( stunning ( 2 ) Myocardial stunning Myocardial contractile function is temporarily but reversibly impaired for a period of hours to days 5 min ischemia, reperfusion, 40min later restoring 1 hr ischemia, reperfusion, a month later restoring
stunning Mechanism of myocardial stunning OFR Ca 2+ overload No-reflow ATP↓ + contractile protein sensitivity ↓ for Ca 2+
( 3 ) Myocardial metabolism ATP depletion ATP substrate catabolized, rushed out
Energy SourcesEnergy PoolEnergy Use Fatty Acids Lactate Pyruvate O2O2 Glycolysis (Anaerobic) Glucose Glucose-1-PO 4 Glycogen TCA cycle (Aerobic) ATP ADPPC C Myokinase Ca ++ ATPase Ca + + CA ++ T T ATP-M + A MA + ADP CONTRACTIONCONTRACTION CPK Processes Involving Energy Production and Utilization by the Myocardium Ca ++ tricarboxylic acid cycle phosphocreatine
( 4 ) Myocardial ultrastructure Histopathologic features in the myocardium following reperfusion. Contraction band necrosis Interstitial haemorrhage Neutrophilic plugging Distal platelets–fibrin microembolisation
2. Cerebral, Hepatic, Pulmonary, Renal ischemia-reperfusion injury Structure Metabolism function change
Section 4 Section 4 Principle of prevent & treatment 1. Controlling reperfusion condition 2. Antioxidant and OFR scavenging agents 3. Inhibition of neutrophil activation 4. Ca 2+ antagonists or Ca 2+ channel blocker
Zhao Mingyao