1 Micromechanics and measurements of interactions at nanoscale from Gauthier Torricelli PhD thesis Joël Chevrier LEPES-CNRS Laboratoire d'Études des Propriétés.

Slides:



Advertisements
Similar presentations
Quantitative measurements of non contact interaction G. Torricelli, M. Rodrigues, C. Alandi, M.Stark, F. Comin J. Chevrier Université Joseph Fourier Grenoble.
Advertisements

ILCC Edinburgh, July 2002 VAN DER WAALS INTERACTION AND STABILITY OF MULTILAYERED LIQUID-CRYSTALLINE SYSTEMS dr. Andreja [ arlah Univerza v Ljubljani.
Simulation and Feedback control in Atomic Force Microscope
Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P.
Qfext07 Leipzig 17 Sep Casimir force measurements with quartz tuning fork and AFM Dr. Thorsten Ludwig Binnotec e.V. Bouchéstr. 12, Haus Berlin.
Tests of Gravity and Gravitational PhysicsCase Western Reserve University, May 19 th, Micromechanical oscillators in the Casimir regime: A tool to.
Dynamics of Vibrational Excitation in the C 60 - Single Molecule Transistor Aniruddha Chakraborty Department of Inorganic and Physical Chemistry Indian.
Natural Broadening From Heisenberg's uncertainty principle: The electron in an excited state is only there for a short time, so its energy cannot have.
SCANNING PROBE MICROSCOPY By AJHARANI HANSDAH SR NO
Computational Solid State Physics 計算物性学特論 第2回 2.Interaction between atoms and the lattice properties of crystals.
Lecture 10. AFM.
Precision measurements of the Casimir force and problems of statistical physics G. L. Klimchitskaya Central Astronomical Observatory at Pulkovo of the.
Optical Tweezers F scatt F grad 1. Velocity autocorrelation function from the Langevin model kinetic property property of equilibrium fluctuations For.
Physics of fusion power Lecture 11: Diagnostics / heating.
Measurement of the Casimir force with a ferrule-top sensor Paul Zuurbier Supervisors: Sven de Man Davide Iannuzzi Technical support: Kier Heeck Associated.
Julien Gabelli Bertrand Reulet Non-Gaussian Shot Noise in a Tunnel Junction in the Quantum Regime Laboratoire de Physique des Solides Bât. 510, Université.
Imaging of flexural and torsional resonance modes of atomic force microscopy cantilevers using optical interferometry Michael Reinstaedtler, Ute Rabe,
Lecture 2: Forces and Potentials. What did we cover in the last lecture? Microscopic and nanoscale forces are important in a number of areas of nanoscience,
QFEXT07 Leipzig, Germany, September 17-21, Recent progress on the precision measurement of the Casimir interaction Ricardo S. Decca Department of.
Thermal Properties of Crystal Lattices
Acknowledgements Experiment C.C. Chang A.B. Banishev R. Castillo Theoretical Comparison V.M. Mostepanenko G.L. Klimchitskaya Research Funded by: DARPA,
Lecture 3 INFRARED SPECTROMETRY
Get to the point!. AFM - atomic force microscopy A 'new' view of structure (1986) AlGaN/GaN quantum well waveguide CD stamper polymer growth surface atoms.
Atomic Force Microscopy
Methods and Tehniques in Surface Science
TAPPINGMODE™ IMAGING APPLICATIONS AND TECHNOLOGY
UIC Atomic Force Microscopy (AFM) Stephen Fahey Ph.D. Advisor: Professor Sivananthan October 16, 2009.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
NANO 225 Micro/Nanofabrication Characterization: Scanning Probe Microscopy 1.
Chapter 21 Electromagnetic Waves. General Physics Exam II Curve: +30.
Phonon spectrum measured in a 1D Yukawa chain John Goree & Bin Liu.
Tutorial 4 Derek Wright Wednesday, February 9 th, 2005.
Surface and Bulk Fluctuations of the Lennard-Jones Clusrers D. I. Zhukhovitskii.
Common scanning probe modes
Scanning Probe Microscopy Colin Folta Matt Hense ME381R 11/30/04.
Tuning Fork Scanning Probe Microscopy Mesoscopic Group Meeting November 29, 2007.
Effect of Charging on Thermal Noise Gregory Harry Massachusetts Institute of Technology - Core Optics and Suspensions Working Groups - March 19, 2004 –
Why is AFM challenging? 1.Jump to contact: k>max(-   V TS /  z  (static) kA>max(-F TS  oscillating mode)  ideal amplitude is A~ ] 2. Non-monotonic.
Electric Force Microscopy (EFM)
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Transverse optical mode in a 1-D chain J. Goree, B. Liu & K. Avinash.
Thermoelastic dissipation in inhomogeneous media: loss measurements and thermal noise in coated test masses Sheila Rowan, Marty Fejer and LSC Coating collaboration.
Gravitational Experiment Below 1 Millimeter and Search for Compact Extra Dimensions Josh Long, Allison Churnside, John C. Price Department of Physics,
Thermal Noise in Thin Silicon Structures
EEM. Nanotechnology and Nanoelectronics
Measurements of Forces at the Nanoscale some ideas for measurements at LEPES in 2005 J. Chevrier 18 November 2004.
Superconductivity and Superfluidity Temperature scales Lecture 14.
Thermal annealing effect of tetrahedral amorphous carbon films deposited by filtered vacuum arc Youngkwang Lee *†,Tae-Young Kim*†, Kyu Hwan Oh†, Kwang-Ryeol.
C 60 - Single Molecule Transistor Aniruddha Chakraborty Indian Institute of Technology Mandi, Mandi , Himachal Pradesh, India.
1/16 Nawrodt, Genoa 09/2009 An overview on ET-WP2 activities in Glasgow R. Nawrodt, A. Cumming, W. Cunningham, J. Hough, I. Martin, S. Reid, S. Rowan ET-WP2.
SPM Users Basic Training August 2010 Lecture VIII – AC Imaging Modes: ACAFM and MAC Imaging methods using oscillating cantilevers.
Atomic Force Microscopy (AFM)
Contact free potential mapping by vibrating capacitor Mizsei, János 1-4/10/2006 Laulasmaa Budapest University of Technology and Economics, Department of.
Get to the point!.
Metallurgha.ir1. Lecture 5 Advanced Topics II Signal, Noise and Bandwidth. Fundamental Limitations of force measurement metallurgha.ir2.
Get to the point!.
Scanning Probe Microscopy: Atomic Force Microscope
Scanning Tunneling Microscopy
Characterization of CNT using Electrostatic Force Microscopy
Chapter III Optical Resonators
The Classical Damping Constant
7x7 surface have been removed and deposited.
UNIT - 4 HEAT TRANSFER.
A brief overview of ImAFM with some applications
Modelling of Atomic Force Microscope(AFM)
Noise Sources in Semiconductor Detectors
Mapping vibrational modes of Si3N4 membrane - Ultrasonic Force Microscopies vs Laser Doppler Vibrometry The development of new micro and nano-electromechanical.
Stability and Dynamics in Fabry-Perot cavities due to combined photothermal and radiation-pressure effects Francesco Marino1,4, Maurizio De Rosa2, Francesco.
Atomic Force Microscope
Atomic Force Microscopy
Presentation transcript:

1 Micromechanics and measurements of interactions at nanoscale from Gauthier Torricelli PhD thesis Joël Chevrier LEPES-CNRS Laboratoire d'Études des Propriétés Électroniques des Solides Université Joseph Fourier Grenoble France ESRF Surface Science Laboratory

2  Casimir interaction:  plasma length P ≈100nm Vacuum, T=300K Vibrating Si microlever at resonance frequency Cf groupe Capasso Cf groupeFischbach Atomic Force Microscopy AFM

3 MEMS et NEMS (Micro et Nano electro-mechanical systems) For NEMS: relevant forces? van der Waals/Casimir electrostatic forces chemical bonding hard core repulsion Brownian motion (k B T) Dissipation-Fluctuation e=160 nm L=2  m l=200 nm dynamical measurement AFM Raphaëlle Dianoux coll. LETI/ESRF/LEPES

4 Proximity approximation R z R van der Waals/Casimir interaction : z Rc F SP Cas   

5 van der Waals Hamaker Real mirrors (electronic properties) No characteristic distance A. Lambrecht et al. Eur. Phys. J. D, 8, 309 (2000) Force gradient Varying Hamaker constant...

6 Casimir/van der Waals force gradient p ≈136 nm Casimir : perfect mirrors Van der Waals Vacuum gold-gold vibration at resonance Calculation of Grad F in this geometry performed by Lambrecht et al (dark line)

7 Determination of Force Gradient Casimir/van der Waals  method:  Static  Dynamic: oscillator at resonance  k,  absolute values  absolute distance (no direct contact allowed)  surface potential  noise-sensibility

8 Expérimental Setup Omicron UHV STM/AFM Force measurement by AFM Atomic Force Microscopy

9

10 Evaporated gold : Ti thin film 2-10nm Au thin film ~ nm gold layer thick enough so that it is equivalent to bulk Gold film deposition on sphere and cantilever (Nanofab K. Ayadi)

11 Measurement Strategy 1-electrostatic calibration 2-  V=0 no average surface potential vdw/Casimir measurement ?

12 Laser Microlevier (k,  ) Photo détecteur divided in 4 sectors Z V Piezo-excitation 1-Lock-in 2- PLL (FM modulation) 3-Sx(  )(ADC+calcul) Amplitude phase shift Fréquency shift Dissipation

13 Linear régime approximation

14 sphere surface interaction Small amplitude: linear approximation valid  V=0 (Casimir) Z≈100nm Linear OK Small amplitude

15 sphere surface interaction larger amplitude: linear approximation NOT valid Strong non linear effect  V=0 (Casimir) Z≈100nm Larger amplitude Large hysteresis Cf Capasso et al work

16 Measure of the resonance frequency shift in order to investigate the  V=0 régime i.e. van der Waals/Casimir Three methods: 1-Direct measure of the resonance curve: amplitude/phase 2-Frequency Modulation FM-AFM: double feedback loop  Amplitude of oscillation = cte  true  resonance followed real time 3-Lever Excitation: Brownian Motion at T=300K

17 Method I: Direct measurement of resonance curves Long preliminary work: surface potential, k, z 0

18 1 Method I: Frequency shift issued from direct measurement of resonance curves  V=0.5V

19 1  V=0V Casimir Vdw limit Casimir limit 60nm No ajustable parameter

20 Method II: FM-AFM measure Absolute distance: adjustable parameter K determination  V=0.5V  V=0V VDW/Casimir Constant Vibration Amplitude Frequency modulation Excitation Frequency = Resonance Frequency k=60,5 N/m

21 Method III: Excitation: Brownian motion Small amplitude of vibration  V=0V VDW/Casimir as Z decreases

22 Calculated curve: absolute distance origine is here adjusted Frequency shift versus distance deduced from the Brownian motion

23 Conclusion: vdw/Casimir acts as a perturbation on a micro-oscillator three different methods in the determination of the frequency shift Dynamical measures on the range 50 to 200 nm : AFM Dynamical measurements in the linear régime Clear separation of : the electrical contribution (  V≠0) the contribution with voltage compensation(  V=0 ± 0,01 V) : van der Waals/Casimir Force gradient measured on 3 orders of magnitude (N/m) Quantitative observation of the intermediate régime between the 2 limiting régimes: van der Waals and Casimir in the vicinity of the plasma length p Problems specially at short distances: important drift roughness lever static deflection non linearity (including in Brownian motion) At distances above 200 nm: insufficient sensibility (higher quality factor, low T,...)

24 Toward Observation of dissipative processes…. Increase of the resonance width increased dissipation fluctuation

25 fluctuation - dissipation theorem spectral density f : friction coefficient

26 As Z decreases,changes of Lorentz curve: the frequency decreases the witdth increases: dissipation! Z Z

27 1 rst dissipative channel: Johnson Noise Z  V ≠0 large distanceshort distance Z   V ≠ 0 dissipation increases   V=0 NO increase of dissipation  electromechanical coupling

28 Coupling of oscillator with thermal bath Johnson noise : v J fluctuating voltage due to resistance R RC   <<1 fluctuation-dissipation theorem

29 fluctuation-dissipation theorem

30 Predicted:  V ≠ 0 dissipation increases as z -2  V = 0 NO increased dissipation!! sphere plan capacity : Result: R: ajusted parameter

31 2 nd dissipative channel Sphere plane distance around 50nm and in vdw/Casimir regime  V=0 i.e. compensation du potentiel de surface Sphere radius=40000 nm No external excitation… Brownian motion

32 As Z decreases:     decreases   rapidly increases!!! large distance Z=54nm Z=42nm Z=34nm Rapid increase of dissipation in vdw/Casimir regime

33 Distance calibration based on Frequency shift Peak width

34 Origin of this dissipative process?  Surface voltage reduced to zero  vacuum (10 -9 mbar).  No contact between sphere and surface (sign of frequency shift  ).  Interaction=Casimir possible origins: - drift of apparatus combined with: -long measurements-strong force gradient - results in drifting resonance frequency... - Brownian motion:sphere/plane coupled through the fluctuating thermal EM field (Dorofeyev, Fuchs et al PRL1999, Stipe, Rugar et al PRL2001) -…?

35 Conclusion: two dissipative channels observed using the resonance curves

36 in progress: a new machine 1- Longue distance: Fabry-Pérot interferometer for both dynamic and static measurement Vacuum Low temperature Casimir Radiation pressure: optic, X ray Project See poster Guillaume Jourdan

37 PhD thesis LSP/LEPES F. Martins Postdoc CNRS M.Stark

38 Remerciements Guillaume Jourdan (LEPES-LKB) Mario Rodrigues (ESRF) Martin Stark (LEPES-LSP) Serge Huant (LEPES-LSP) Khaled Ayadi (LEPES) Florence Marchi (LEPES-UJF) Astrid Lambrecht (LKB) Irina Snigereva (ESRF) Fabio Comin (ESRF) Joël Chevrier (LEPES-UJF-ESRF) Merci à tous pour votre attention… Static measurement: Torricelli poster Fabry Pérot interferometer: Jourdan poster