Chapter Menu The Periodic Table and Periodic Law Section 6.1Section 6.1Development of the Modern Periodic Table Section 6.2Section 6.2 Classification.

Slides:



Advertisements
Similar presentations
The Periodic Table and Periodic Law
Advertisements

Chapter 3 Introduction to the Periodic Table
Click a hyperlink or folder tab to view the corresponding slides.
Chapter 6 The Periodic Table
Click a hyperlink or folder tab to view the corresponding slides.
Section 6.3 Periodic Trends
Click a hyperlink or folder tab to view the corresponding slides.
Chapter 6.
Section 1: Development of the Modern Periodic Table
Section 6.1 Development of the Modern Periodic Table
Searching For an Organizing Principle
The Periodic Table And the Periodic Law.
The Periodic Table and Periodic Law
CHEMISTRY Matter and Change
Chapter 6 The Periodic Table and Periodic Law
Organization of the Periodic Table. Demetry Mendeleev organized the elements in the first periodic table by order of mass in Found repetition in.
Section 6.1 Development of the Modern Periodic Table
CH 6.3 Periodic Trends.
Chapter 9 Chemical Periodicity Chemistry
The Periodic Table and Periodic Trends
Section 6.1.
Section 6.3 Periodic Trends
Click a hyperlink or folder tab to view the corresponding slides.
Section 6.3 Periodic Trends
CHEMISTRY Matter and Change
Chapter Menu The Periodic Table and Periodic Law Section 6.1Section 6.1Development of the Modern Periodic Table Section 6.2Section 6.2 Classification.
Chapter 6 The Periodic Table and Periodic Law
The Periodic Table & Periodic Law
Chapter 6 The Periodic Table and Periodic Law. I. History of the Periodic Table A. Just a list In the late 1790s, there were only 23 known elements The.
Section 6-1 Section 6.1 Development of the Modern Periodic Table Trace the development of the periodic table. atomic number: the number of protons in.
Organization of the Periodic Table
Periodic Table.
Chapter Menu The Periodic Table and Periodic Law Section 6.1Section 6.1Development of the Modern Periodic Table Section 6.2Section 6.2 Classification.
Click a hyperlink to view the corresponding slides.
The Periodic Table and Periodic Law Chapter 6. History of the Periodic Table’s Development Late 1790s: Lavoisier compiled a list of the 23 known elements.
The Periodic Table Chapter 6. A quest for accurate reproduction J.W. Dobereiner – published his triad classification system (ex. Cl,Br,I similar chemical.
Chapter 6: The Periodic Table and Periodic Law. Development of the Periodic Table 1790s –Antoine Lavoisier composed a list of the 23 known elements –Included.
The Periodic Table and Periodic Law Chemistry Unit 5.
*How did Moseley arrange the periodic table?
Chapter 6 The Periodic Table and Periodic Law. Historical Timeline Development of the Periodic Table.
The Periodic Table and Periodic Law Chapter 6 1. History of the Periodic Table’s Development In the 1700s, Lavoisier compiled a list of all the known.
Chapter Menu The Periodic Table and Periodic Law Section 6.1Section 6.1Development of the Modern Periodic Table Section 6.2Section 6.2 Classification.
Periodic Table and Periodic Law
Chapter 6 The Periodic Table and Periodic Law. Development of the Modern Periodic Table Modern Periodic Table Periodic law – states that there is a periodic.
The periodic table evolved over time as scientists discovered more useful ways to compare and organize the elements. Section 1: Development of the Modern.
Glencoe Chapter 6 Bryce Wolzen.  Dmitri Mendeleev: ◦ Developed the first “modern” periodic table (1869) ◦ Arranged elements according to increasing.
Chapter Menu The Periodic Table and Periodic Law Section 6.1Section 6.1Development of the Modern Periodic Table Section 6.2Section 6.2 Classification.
Chapter Menu The Periodic Table and Periodic Law Section 6.1Section 6.1Development of the Modern Periodic Table Section 6.2Section 6.2 Classification.
Lecture 27 Periodic Table Ozgur Unal 1.  Try to identify the periodicity in the musical notes. 2.
The Periodic Table and Periodic Law Chemistry Chapter 6.
Chapter Menu The Periodic Table and Periodic Law Section 6.1Section 6.1Development of the Modern Periodic Table Section 6.2Section 6.2 Classification.
Click a hyperlink or folder tab to view the corresponding slides.
Section 1: Development of the Modern Periodic Table
Click a hyperlink or folder tab to view the corresponding slides.
Chapter 6 The Periodic Table & Periodic Law
The Periodic Table and Periodic Law
Chapter 6.
Click a hyperlink or folder tab to view the corresponding slides.
Chapter 6 The Periodic Table and Periodic Law
Unit 3 Part 3: Periodic Trends
Click a hyperlink to view the corresponding slides.
Ch 6: The Periodic Table and Periodic Law
Ch. 6: The Periodic Table.
Click a hyperlink or folder tab to view the corresponding slides.
The Periodic Table & Periodic Law
The Periodic Table Unit 2.
Presentation transcript:

Chapter Menu The Periodic Table and Periodic Law Section 6.1Section 6.1Development of the Modern Periodic Table Section 6.2Section 6.2 Classification of the Elements Section 6.3Section 6.3 Periodic Trends Exit Click a hyperlink or folder tab to view the corresponding slides.

Section 6-1 Section 6.1 Development of the Modern Periodic Table Trace the development of the periodic table. atomic number: the number of protons in an atom Identify key features of the periodic table. The periodic table evolved over time as scientists discovered more useful ways to compare and organize the elements.

Section 6-1 Section 6.1 Development of the Modern Periodic Table (cont.) periodic law group period representative elements transition elements metal alkali metals alkaline earth metals transition metal inner transition metal lanthanide series actinide series nonmetals halogen noble gas metalloid

Section 6-1 Development of the Periodic Table In the 1700s, Lavoisier compiled a list of all the known elements of the time.

Section 6-1 Development of the Periodic Table (cont.) The 1800s brought large amounts of information and scientists needed a way to organize knowledge about elements. John Newlands proposed an arrangement where elements were ordered by increasing atomic mass.

Section 6-1 Development of the Periodic Table (cont.) Newlands noticed when the elements were arranged by increasing atomic mass, their properties repeated every eighth element.

Section 6-1 Development of the Periodic Table (cont.) Meyer and Mendeleev both demonstrated a connection between atomic mass and elemental properties. Moseley rearranged the table by increasing atomic number, and resulted in a clear periodic pattern. Periodic repetition of chemical and physical properties of the elements when they are arranged by increasing atomic number is called periodic law.periodic law

Section 6-1 Development of the Periodic Table (cont.)

Section 6-1 The Modern Periodic Table The modern periodic table contains boxes which contain the element's name, symbol, atomic number, and atomic mass.

Section 6-1 The Modern Periodic Table (cont.) Columns of elements are called groups.groups Rows of elements are called periods.periods Elements in groups 1,2, and possess a wide variety of chemical and physical properties and are called the representative elements.representative elements Elements in groups 3-12 are known as the transition metals. transition metals

Periods Each row is a period The number of elements per period varies due to the way the orbitals increase from NRG level to NRG level

Groups Each column in the periodic table is called a group Elements within a group have similar properties Elements in a group have similar electron configurations The electron configuration of an element determines its chemical properties

Classes of Elements 3 ways to classify elements –States at room temperature: solid, liquid, gas –Naturally occurring or not naturally occurring (atomic #93 and higher do not occur naturally) –Categories based on their general properties Metals – located on the left in the periodic table Non metals – located on the right Metalloids – in-between

Metals, Non-Metals, Metalloids

Metals Most on the periodic table are classified as metals Properties –Good conductors –Except mercury, they are solid at room temp –Malleable –Ductile Groups 3-12 are transition metals can form compounds with distinctive colors

Non Metals Properties on nonmetals –Opposite of metals –Poor conductors –Many are gases at room temp –The nonmetals that are solid at room temp are very brittle

Metalloids Properties of metalloids –Between metals and nonmetals –A metalloid’s ability to conduct electric current varies depending on temperature

Section 6-1 The Modern Periodic Table (cont.) Elements are classified as metals, non-metals, and metalloids. Metals are elements that are generally shiny when smooth and clean, solid at room temperature, and good conductors of heat and electricity.Metals Alkali metals are all the elements in group 1 except hydrogen, and are very reactive.Alkali metals Alkaline earth metals are in group 2, and are also highly reactive.Alkaline earth metals

Section 6-1 The Modern Periodic Table (cont.) The transition elements are divided into transition metals and inner transition metals. transition metalsinner transition metals The two sets of inner transition metals are called the lanthanide series and actinide series and are located at the bottom of the periodic table.lanthanide seriesactinide series

Section 6-1 The Modern Periodic Table (cont.) Group 17 is composed of highly reactive elements called halogens.halogens Group 18 gases are extremely unreactive and commonly called noble gases.noble gases

Section 6-1 The Modern Periodic Table (cont.) Metalloids have physical and chemical properties of both metals and non-metals, such as silicon and germanium.Metalloids

Section 6-1 The Modern Periodic Table (cont.)

A.A B.B C.C D.D Section 6-1 Section 6.1 Assessment What is a row of elements on the periodic table called? A.octave B.period C.group D.transition

A.A B.B C.C D.D Section 6-1 Section 6.1 Assessment What is silicon an example of? A.metal B.non-metal C.inner transition metal D.metalloid

End of Section 6-1

Section 6-2 Section 6.2 Classification of the Elements Explain why elements in the same group have similar properties. valence electron: electron in an atom's outermost orbitals; determines the chemical properties of an atom Identify the four blocks of the periodic table based on their electron configuration. Elements are organized into different blocks in the periodic table according to their electron configurations.

Section 6-2 Organizing the Elements by Electron Configuration Recall electrons in the highest principal energy level are called valence electrons. All group 1 elements have one valence electron.

Section 6-2 Organizing the Elements by Electron Configuration (cont.) The energy level of an element’s valence electrons indicates the period on the periodic table in which it is found. The number of valence electrons for elements in groups is ten less than their group number.

Section 6-2 Organizing the Elements by Electron Configuration (cont.)

Section 6-2 The s-, p-, d-, and f-Block Elements The shape of the periodic table becomes clear if it is divided into blocks representing the atom’s energy sublevel being filled with valence electrons.

Section 6-2 The s-, p-, d-, and f-Block Elements (cont.) s-block elements consist of group 1 and 2, and the element helium. Group 1 elements have a partially filled s orbital with one electron. Group 2 elements have a completely filled s orbital with two electrons.

Section 6-2 The s-, p-, d-, and f-Block Elements (cont.) After the s-orbital is filled, valence electrons occupy the p-orbital. Groups contain elements with completely or partially filled p orbitals.

Section 6-2 The s-, p-, d-, and f-Block Elements (cont.) The d-block contains the transition metals and is the largest block. There are exceptions, but d-block elements usually have filled outermost s orbital, and filled or partially filled d orbital. The five d orbitals can hold 10 electrons, so the d-block spans ten groups on the periodic table.

Section 6-2 The s-, p-, d-, and f-Block Elements (cont.) The f-block contains the inner transition metals. f-block elements have filled or partially filled outermost s orbitals and filled or partially filled 4f and 5f orbitals. The 7 f orbitals hold 14 electrons, and the inner transition metals span 14 groups.

A.A B.B C.C D.D Section 6-2 Section 6.2 Assessment Which of the following is NOT one of the elemental blocks of the periodic table? A.s-block B.d-block C.g-block D.f-block

A.A B.B C.C D.D Section 6-2 Section 6.2 Assessment Which block spans 14 elemental groups? A.s-block B.p-block C.f-block D.g-block

End of Section 6-2

Section 6-3 Section 6.3 Periodic Trends Compare period and group trends of several properties. principal energy level: the major energy level of an atom ion ionization energy octet rule electronegativity Relate period and group trends in atomic radii to electron configuration. Trends among elements in the periodic table include their size and their ability to lose or attract electrons

Periodic Table Design Because of the way the periodic table is organized today, we can extrapolate a lot of information about an element by looking at its location on the table –Atomic radii –Ionization energy –Metallic Character –Non-metallic Character –Electronegativity

Atomic Radii Measure of the size of an element’s atoms Distance from the nucleus to the surrounding outer edge of the cloud of electrons Across a period from left to right the atomic radii will decrease From the top to the bottom of a group, the atomic radii will increase Draw arrows on your periodic table to indicate these trends

Section 6-3 Atomic Radius Atomic size is a periodic trend influenced by electron configuration. For metals, atomic radius is half the distance between adjacent nuclei in a crystal of the element.

Section 6-3 Atomic Radius (cont.) For elements that occur as molecules, the atomic radius is half the distance between nuclei of identical atoms.

Section 6-3 Atomic Radius (cont.) There is a general decrease in atomic radius from left to right, caused by increasing positive charge in the nucleus. Valence electrons are not shielded from the increasing nuclear charge because no additional electrons come between the nucleus and the valence electrons.

Section 6-3 Atomic Radius (cont.)

Section 6-3 Atomic Radius (cont.) Atomic radius generally increases as you move down a group. The outermost orbital size increases down a group, making the atom larger.

Section 6-3 Ionization Energy (cont.) The octet rule states that atoms tend to gain, lose or share electrons in order to acquire a full set of eight valence electrons.octet rule The octet rule is useful for predicting what types of ions an element is likely to form.

Section 6-3 Ionic Radius An ion is an atom or bonded group of atoms with a positive or negative charge.ion When atoms lose electrons and form positively charged ions, they always become smaller for two reasons: 1.The loss of a valence electron can leave an empty outer orbital resulting in a small radius. 2.Electrostatic repulsion decreases allowing the electrons to be pulled closer to the radius.

Section 6-3 Ionic Radius (cont.) When atoms gain electrons, they can become larger, because the addition of an electron increases electrostatic repulsion.

Section 6-3 Ionic Radius (cont.) The ionic radii of positive ions generally decrease from left to right. The ionic radii of negative ions generally decrease from left to right, beginning with group 15 or 16.

Section 6-3 Ionic Radius (cont.) Both positive and negative ions increase in size moving down a group.

Ionization Energy Ion = an atom that has lost or gained an electron causing it to have a positive or negative charge Ionization Energy = The energy required to remove the outermost electron from an atom If an electron is pulled away from the atom, an ion is formed

Section 6-3 Ionization Energy Ionization energy is defined as the energy required to remove an electron from a gaseous atom.Ionization energy The energy required to remove the first electron is called the first ionization energy.

Section 6-3 Ionization Energy (cont.) Removing the second electron requires more energy, and is called the second ionization energy. Each successive ionization requires more energy, but it is not a steady increase.

Section 6-3 Ionization Energy (cont.) The ionization at which the large increase in energy occurs is related to the number of valence electrons. First ionization energy increases from left to right across a period. First ionization energy decreases down a group because atomic size increases and less energy is required to remove an electron farther from the nucleus.

Ionization Energy

Section 6-3 Ionization Energy (cont.)

Section 6-3 Ionization Energy (cont.)

Section 6-3 Ionization Energy (cont.)

Section 6-3 Ionization Energy (cont.)

Metallic Character Chemical properties associated with elements classified as metals Examples?? As you move across the periodic table from left to right, metallic character decreases As you move down a group, the metallic character increases

Metallic Character

Non Metallic Character Nonmetallic Character Chemical properties associated with chemicals classified as nonmetals Examples??? As you move across the periodic table from left to right, non metallic character increases As you move down a group, non metallic character decreases

Electronegativity The measure of an atom’s ability to attract electrons As you move left to right on the periodic table, electronegativity increases As you move down a group decreases due to the longer distance between the outer electrons and the nucleus

Section 6-3 Ionization Energy (cont.) The electronegativity of an element indicates its relative ability to attract electrons in a chemical bond.electronegativity Electronegativity decreases down a group and increases left to right across a period.

Electronegativity

A.A B.B C.C D.D Section 6-3 Section 6.3 Assessment The lowest ionization energy is the ____. A.first B.second C.third D.fourth

A.A B.B C.C D.D Section 6-3 Section 6.3 Assessment The ionic radius of a negative ion becomes larger when: A.moving up a group B.moving right to left across period C.moving down a group D.the ion loses electrons

End of Section 6-3

Resources Menu Chemistry Online Study Guide Chapter Assessment Standardized Test Practice Image Bank Concepts in Motion

Study Guide 1 Section 6.1 Development of the Modern Periodic Table Key Concepts The elements were first organized by increasing atomic mass, which led to inconsistencies. Later, they were organized by increasing atomic number. The periodic law states that when the elements are arranged by increasing atomic number, there is a periodic repetition of their chemical and physical properties. The periodic table organizes the elements into periods (rows) and groups (columns); elements with similar properties are in the same group.

Study Guide 1 Section 6.1 Development of the Modern Periodic Table (contd.) Key Concepts Elements are classified as either metals, nonmetals, or metalloids.

Study Guide 2 Section 6.2 Classification of the Elements Key Concepts The periodic table has four blocks (s, p, d, f). Elements within a group have similar chemical properties. The group number for elements in groups 1 and 2 equals the element’s number of valence electrons. The energy level of an atom’s valence electrons equals its period number.

Study Guide 3 Section 6.3 Periodic Trends Key Concepts Atomic and ionic radii decrease from left to right across a period, and increase as you move down a group. Ionization energies generally increase from left to right across a period, and decrease as you move down a group. The octet rule states that atoms gain, lose, or share electrons to acquire a full set of eight valence electrons. Electronegativity generally increases from left to right across a period, and decreases as you move down a group.

A.A B.B C.C D.D Chapter Assessment 1 The actinide series is part of the A.s-block elements. B.inner transition metals. C.non-metals. D.alkali metals.

A.A B.B C.C D.D Chapter Assessment 2 In their elemental state, which group has a complete octet of valence electrons? A.alkali metals B.alkaline earth metals C.halogens D.noble gases

A.A B.B C.C D.D Chapter Assessment 3 Which block contains the transition metals? A.s-block B.p-block C.d-block D.f-block

A.A B.B C.C D.D Chapter Assessment 4 An element with a full octet has how many valence electrons? A.two B.six C.eight D.ten

A.A B.B C.C D.D Chapter Assessment 5 How many groups of elements are there? A.8 B.16 C.18 D.4

A.A B.B C.C D.D STP 1 Which group of elements are the least reactive? A.alkali metals B.inner transition metals C.halogens D.noble gases

A.A B.B C.C D.D STP 2 On the modern periodic table, alkaline earth metals are found only in ____. A.group 1 B.s-block C.p-block D.groups 13–18

A.A B.B C.C D.D STP 3 Unreactive gases are mostly found where on the periodic table? A.halogens B.group 1 and 2 C.group 18 D.f-block

A.A B.B C.C D.D STP 4 Bromine is a member of the A.noble gases. B.inner transition metals. C.earth metals. D.halogens.

A.A B.B C.C D.D STP 5 How many groups does the d-block span? A.two B.six C.ten D.fourteen

IB Menu Click on an image to enlarge.

IB 1

IB 2

IB 3

IB 4

IB 5

IB 6

IB 7

IB 8

IB 9

IB 10

IB 11

IB 12

IB 13

IB 14

IB 15

IB 16

IB 17

IB 18

IB 19

CIM Table 6.4Noble Gas Electron Configuration Figure 6.5The Periodic Table Figure 6.11Trends in Atomic Radii Figure 6.18 Trends in Electronegativity

Help Click any of the background top tabs to display the respective folder. Within the Chapter Outline, clicking a section tab on the right side of the screen will bring you to the first slide in each respective section. Simple navigation buttons will allow you to progress to the next slide or the previous slide. The “Return” button will allow you to return to the slide that you were viewing when you clicked either the Resources or Help tab. The Chapter Resources Menu will allow you to access chapter specific resources from the Chapter Menu or any Chapter Outline slide. From within any feature, click the Resources tab to return to this slide. To exit the presentation, click the Exit button on the Chapter Menu slide or hit Escape [Esc] on your keyboards while viewing any Chapter Outline slide.

End of Custom Shows This slide is intentionally blank.