Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.

Slides:



Advertisements
Similar presentations
Chapter 12 The Cell Cycle.
Advertisements

Chapter 12 The Cell Cycle.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Introduction to Biology
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: The Key Roles of Cell Division The continuity of life – Is based upon.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Multicellular organisms depend on cell division for:
● The ability of organisms to reproduce best distinguishes living things from nonliving matter
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 12 The Cell Cycle.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 12 The Cell Cycle.
Overview: The Key Roles of Cell Division
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Fig Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 12 The Cell Cycle. Fig. 12-UN1 Telophase and Cytokinesis Anaphase Metaphase Prometaphase Prophase MITOTIC (M) PHASE Cytokinesis Mitosis S G1G1.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
CH 12 NOTES, part 1: Chromosomes, the Cell Cycle, and Cell Division.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 12 The Cell Cycle.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Why Cells divide? In unicellular organisms, division of one cell reproduces the.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms depend on cell division for –Development from a fertilized.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Slide 1 Chapter 12: The Cell Cycle. Slide 2 Fig The Cell Cycle.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 9 b The Cell Cycle. Cell Division: Key Terms b Genome: cell’s genetic information b Somatic (body cells) cells b Gametes (germ cells): sperm and.
In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms depend on cell division for: – Development from a.
Chapter 12.  The ability of organisms to produce more of their own kind best distinguishes living things from nonliving matter  The continuity of life.
The Cell Cycle. In unicellular organisms, division of one cell reproduces the entire organism In unicellular organisms, division of one cell reproduces.
Fig Origin of replication Two copies of origin E. coli cell Bacterial chromosome Plasma membrane Cell wall Origin.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Cell Cycle.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Overview: The Key Roles of Cell Division The ability of organisms to reproduce best distinguishes living things from nonliving matter The continuity of.
Chapter 12 The Cell Cycle Lab 3 Mitosis and Meiosis.
Cell reproduction and the division of the NUCLEUS and CYTOPLASM.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Multicellular organisms depend on cell division for: – Development from a fertilized cell – Growth – Repair.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 12 The Cell Cycle.
 Purpose of cell division › Unicellular organisms  Reproduction › Multicellular organisms  Development from a fertilized cell  Growth  Repair.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
The Cell Cycle. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Eukaryotic cell division consists of: – ________, the division.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Key Roles of Cell Division The continuity of life is based upon the reproduction.
Chapter 12 The Cell Cycle.  The continuity of life  Is based upon the reproduction of cells, or cell division.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
10 µm Fig Nucleus Chromatin condensing Nucleolus Chromosomes
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Fig Figure 12.1 How do a cell’s chromosomes change during cell division?
Chapter 12: The Cell Cycle 1.
Chapter 15 The Eukaryotic Cell Cycle, Mitosis, & Meiosis
The Cell Cycle Chapter 12.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Overview: The Key Roles of Cell Division
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
The Cell Cycle Chapter 12.
Presentation transcript:

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Chapter 12 The Cell Cycle

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms depend on cell division for: – Development from a fertilized cell – Growth – Repair Cell division is an integral part of the cell cycle, the life of a cell from formation to its own division

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 12.1: Cell division results in genetically identical daughter cells Cells duplicate their genetic material before they divide, ensuring that each daughter cell receives an exact copy of the genetic material, DNA A dividing cell duplicates its DNA, allocates the two copies to opposite ends of the cell, and only then splits into daughter cells

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Cellular Organization of the Genetic Material A cell’s endowment of DNA (its genetic information) is called its genome DNA molecules in a cell are packaged into chromosomes

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Every eukaryotic species has a characteristic number of chromosomes in each cell nucleus Somatic (nonreproductive) cells have two sets of chromosomes Gametes (reproductive cells: sperm and eggs) have half as many chromosomes as somatic cells Eukaryotic chromosomes consist of chromatin, a complex of DNA and protein that condenses during cell division

LE 12-4 Chromosome duplication (including DNA synthesis) 0.5 µm Centromere Sister chromatids Separation of sister chromatids CentromeresSister chromatids

LE 12-5 G1G1 G2G2 S (DNA synthesis) INTERPHASE Cytokinesis MITOTIC (M) PHASE Mitosis

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Mitosis is conventionally divided into five phases: – Prophase – Prometaphase – Metaphase – Anaphase – Telophase Cytokinesis is well underway by late telophase [Animations and videos listed on slide following figure]

LE 12-6ca G 2 OF INTERPHASE PROPHASEPROMETAPHASE

LE 12-6da METAPHASEANAPHASE TELOPHASE AND CYTOKINESIS 10 µm

LE 12-7 Microtubules Chromosomes Sister chromatids Aster Centrosome Metaphase plate Kineto- chores Kinetochore microtubules 0.5 µm Overlapping nonkinetochore microtubules 1 µm Centrosome

LE 12-8b Chromosome movement Microtubule Motor protein Chromosome Kinetochore Tubulin subunits

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Cytokinesis: A Closer Look In animal cells, cytokinesis occurs by a process known as cleavage, forming a cleavage furrow In plant cells, a cell plate forms during cytokinesis

LE Nucleus Cell plate Chromosomes Nucleolus Chromatin condensing 10 µm Prophase. The chromatin is condensing. The nucleolus is beginning to disappear. Although not yet visible in the micrograph, the mitotic spindle is starting to form. Prometaphase. We now see discrete chromosomes; each consists of two identical sister chromatids. Later in prometaphase, the nuclear envelope will fragment. Metaphase. The spindle is complete, and the chromosomes, attached to microtubules at their kinetochores, are all at the metaphase plate. Anaphase. The chromatids of each chromosome have separated, and the daughter chromosomes are moving to the ends of the cell as their kinetochore micro- tubules shorten. Telophase. Daughter nuclei are forming. Meanwhile, cytokinesis has started: The cell plate, which will divide the cytoplasm in two, is growing toward the perimeter of the parent cell.

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Binary Fission Prokaryotes (bacteria and archaea) reproduce by a type of cell division called binary fission In binary fission, the chromosome replicates (beginning at the origin of replication), and the two daughter chromosomes actively move apart

LE 12-11_3 Origin of replication Cell wall Plasma membrane Bacterial chromosome E. coli cell Two copies of origin Chromosome replication begins. Soon thereafter, one copy of the origin moves rapidly toward the other end of the cell. Replication continues. One copy of the origin is now at each end of the cell. Origin Replication finishes. The plasma membrane grows inward, and new cell wall is deposited. Two daughter cells result.

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Cell Cycle Control System The sequential events of the cell cycle are directed by a distinct cell cycle control system, which is similar to a clock The clock has specific checkpoints where the cell cycle stops until a go-ahead signal is received

LE G 1 checkpoint G1G1 S M M checkpoint G 2 checkpoint G2G2 Control system

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings For many cells, the G 1 checkpoint seems to be the most important one If a cell receives a go-ahead signal at the G 1 checkpoint, it will usually complete the S, G 2, and M phases and divide If the cell does not receive the go-ahead signal, it will exit the cycle, switching into a nondividing state called the G 0 phase

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Cell Cycle Clock: Cyclins and Cyclin-Dependent Kinases Two types of regulatory proteins are involved in cell cycle control: cyclins and cyclin-dependent kinases (Cdks) The activity of cyclins and Cdks fluctuates during the cell cycle

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Cancer cells exhibit neither density-dependent inhibition nor anchorage dependence

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Loss of Cell Cycle Controls in Cancer Cells Cancer cells do not respond normally to the body’s control mechanisms Cancer cells form tumors, masses of abnormal cells within otherwise normal tissue If abnormal cells remain at the original site, the lump is called a benign tumor Malignant tumors invade surrounding tissues and can metastasize, exporting cancer cells to other parts of the body, where they may form secondary tumors

LE Cancer cell Blood vessel Lymph vessel Tumor Glandular tissue Metastatic tumor A tumor grows from a single cancer cell. Cancer cells invade neighboring tissue. Cancer cells spread through lymph and blood vessels to other parts of the body. A small percentage of cancer cells may survive and establish a new tumor in another part of the body.