Christina Dimopoulou Max-Planck-Institut für Kernphysik, Heidelberg IPHE, Université de Lausanne, 26.05.2003 Exploring atomic fragmentation with COLTRIMS.

Slides:



Advertisements
Similar presentations
Drew Rotunno Mentor: Dr. Itzik Ben-Itzhak, Bethany Joachim Bethany Joachim.
Advertisements

Hadron physics with GeV photons at SPring-8/LEPS II
Program Degrad.1.0 Auger cascade model for electron thermalisation in gas mixtures produced by photons or particles in electric and magnetic fields S.F.Biagi.
electrostatic ion beam trap
LCLS Atomic Physics with Intense X-rays at LCLS Philip H. Bucksbaum, University of Michigan, Ann Arbor, MI Roger Falcone, University of California, Berkeley,
J.P. Brichta, S. Walker, X. Sun, J.H. Sanderson Department of Physics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada Laser induced coincidence.
Imaginary time method and nonlinear ionization by powerful free electron lasers S.V. Popruzhenko Moscow Engineering Physics Institute, Moscow EMMI workshop.
Intense Field Femtosecond Laser Interactions AMP TalkJune 2004 Ultrafast Laser Interactions with atoms, molecules, and ions Jarlath McKenna Supervisor:
An STM Measures I(r) Tunneling is one of the simplest quantum mechanical process A Laser STM for Molecules Tunneling has transformed surface science. Scanning.
Generation of short pulses
2. High-order harmonic generation in gases Attosecond pulse generation 1. Introduction to nonlinear optics.
Excitation processes during strong- field ionization and dissociatation of molecules Grad students: Li Fang, Brad Moser Funding : NSF-AMO November 29,
X-ray Free-Electron Lasers: Challenges for Theory, Cambridge, Massachusetts, USA, June 19, 2006 Infrared X-ray pump-probe spectroscopy Hans Ågren Department.
Lecture 3: Laser Wake Field Acceleration (LWFA)
Strong-field physics in the x-ray regime Louis DiMauro ITAMP FEL workshop June 21, 2006 fundamental studies of intense laser-atom interactions generation.
Iodine Molecular Interferometer and Inversion Symmetry Mat Leonard.
1 Pukhov, Meyer-ter-Vehn, PRL 76, 3975 (1996) Laser pulse W/cm 2 plasma box (n e /n c =0.6) B ~ mc  p /e ~ 10 8 Gauss Relativistic electron beam.
Photoelectron Spectroscopy Lecture 7 – instrumental details –Photon sources –Experimental resolution and sensitivity –Electron kinetic energy and resolution.
Radiation therapy is based on the exposure of malign tumor cells to significant but well localized doses of radiation to destroy the tumor cells. The.
TOF Mass Spectrometer &
Discussion of measurement methods for femtosecond and attosecond pulses.
Ions in Intense Femtosecond Laser Fields Jarlath McKenna MSci Project10th December 2001 Supervisor: Prof. Ian Williams.
Fragmentation mechanisms for Methane induced by electron impact
Nuclear dynamics in the dissociative recombination of H 3 + and its isotopologues Daniel Zajfman Max-Planck-Institut für Kernphysik and Weizmann Institute.
Atomic Physics Group Stockholm University Experimental Projects Instrumentation seminar November 28, 2002 Presented by Sven Mannervik.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Highlights of talk : 1.e+e- pair laser production 1.Collisionless shocks 1.Colliding laser pulses accelerator.
Interaction of laser pulses with atoms and molecules and spectroscopic applications.
Wbt1 Chapter 10. REMPI, ZEKE, and MATI Spectroscopies Resonance-enhanced multiphoton ionization (REMPI) spectroscopy involves more than one photons in.
Classical and quantum electrodynamics e®ects in intense laser pulses Antonino Di Piazza Workshop on Petawatt Lasers at Hard X-Ray Sources Dresden, September.
VARIOUS MECHANISMS OF ELECTRON HEATING AT THE IRRADIATION OF DENSE TARGETS BY A SUPER-INTENSE FEMTOSECOND LASER PULSE Krainov V.P. Moscow Institute of.
Atomic Physics with VUV-FEL Radiation R. Moshammer MPIK-Heidelberg SASE FEL Radiation (Self Amplification of Spontaneous Emission Free Electron Laser)
Molecular Triplet States: Excitation, Detection, and Dynamics Wilton L. Virgo Kyle L. Bittinger Robert W. Field Collisional Excitation Transfer in the.
“Design Of The Ion Extraction System In A Reaction Microscope” Speaker: Marco Panniello Federico II University Federico II University Industrial Engineering.
Dynamics of irradiated clusters and molecules Solvated molecules Deposited clusters Free clusters Electron Emission Laser Projectile Irradiation of solvated.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
1 Pengqian Wang Department of Physics Western Illinois University March 4, 2013.
typical kHz experiment
Ultrafast Laser Interactions with Atoms, Ions and Molecules
Daisuke Ando, * Susumu Kuma, ** Masaaki Tsubouchi,** and Takamasa Momose** *Kyoto University, JAPAN **The University of British Columbia, CANADA SPECTROSCOPY.
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
Results using molecular targets Linear-circular comparison of the intense field ionization of simple molecular targets (N 2, CO 2 ): evidence of nonsequential.
Results using atomic targets Suppression of Nonsequential ionization from an atomic ion target (comparison of double ionization of Ar and Ar + ). Determination.
Precision spectroscopy of HCI in a reaction microscope Max-Planck-Institut für Kernphysik, Heidelberg C. Dimopoulou HITRAP Meeting, May 2005, Munich.
Key experiment planned at HITRAP Precision spectroscopy of singly and doubly-excited states of slow HCI Max- Planck-Institut für Kernphysik, Heidelberg.
HPLUM 17 December 2003 Prof Ian Williams Dr B. Srigengan Mr M. Suresh Mr Jarlath McKenna Prof Roy Newell Dr Will Bryan Mrs Sarah Watson Miss Elizabeth.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Ionization in atomic and solid state physics. Paul Corkum Joint Attosecond Science Lab University of Ottawa and National Research Council of Canada Tunneling.
Univ. Tokyo & RIKEN Y. Yamazaki 2008/7/17 EMMI kick-off
Intense laser field interaction with molecular ions Daniel Strasser
N. Kabachnik Institute of Nuclear Physics, Moscow State University
Precision Tests of Fundamental Interactions with Ion Trap Experiments
Dissociation of Molecular Ions Studied by
Elettra Sincrotrone Trieste
Experiments at LCLS wavelength: 0.62 nm (2 keV)
Interaction of Intense Ultrashort Laser Fields with Xe, Xe+ and Xe++
Sequential two- and three-photon ionization
sub-femtosecond correlated dynamics probed with antiprotons
Giorgi Veshapidze, Haruo Shiromaru Tokyo Metropolitan University
1. Ionization of molecules - ( MO-ADK theory)
Fragmentation Dynamics of H2+ / D2+ Kansas State University
Xiao Min Tong and Chii Dong Lin
Photoelectron diffraction from small molecules:
Diagnosis of a High Harmonic Beam Using
PHL424: Rutherford scattering discovery of nucleus
I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray
Laser Assisted Charge transfer in He++ + H Collisions
High Harmonic Analysis Using a COLTRIMS Technique
AMO Early Science Capability
Few-body quantum dynamics in strong fields:
Presentation transcript:

Christina Dimopoulou Max-Planck-Institut für Kernphysik, Heidelberg IPHE, Université de Lausanne, Exploring atomic fragmentation with COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy)

Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fields Experiment - The “Reaction-Microscope” Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

Momentum Spectroscopy: Principle piccolo sparkling wine champagne landing zone (detector) velocity, angle time-of-flight and landing position => initial velocity and angle i.e. initial momentum vector

electrons position sensitive multi-hit Projectile: Cold Target: supersonic atomic jet molecules clusters Detectors: recoil ions E-field Recoil Ion Momentum Spectroscopy single photons intense lasers charged particles   t;  x,y,z) ~  eV B-field  ~ meV Reaction Microscope

Ion Time-of-flight Ar + Ar 2 + Ar ++ H2O+H2O+ H2+H2+ Ex. Multi-photon ionisation of Ar p || [a.u.] 0.5 Ar + N=12 N=13 N=11 N=  eV detector +U o a d +U ion trajectory

Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fields Experiment - The “Reaction-Microscope” Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

Single Photons... Intense Laser Target Jet Laser Ion Detector Electron Detector Ti:Sa Laser photon energy: 1.5 eV (T=2.7 fs) pulse length (FWHM): 30 fs intensity: I max ~10 16 W/cm 2 repetition rate: 3 kHz

Multi-photon Single Ionisation electrons  E R = E e /M R electron Ar 1+ E e = N h - I p, N>10 P e = - P R I  W/cm 2 h = 1.56 eV P  = E  /c  0

Intense Laser: Single Ionisation  =30 fs E y (t) t I  W/cm 2 pulse T=2  /  =2.7 fs Drift momentum 2. t  t 0 = 0  t 0 = 45  t 0 = 90 E y (t) Moshammer et al. PRL 2000 tunneling P ion =-P e  0 e 1 1.

Intense Laser : Double Ionisation sequential Larochelle et. al J. Phys. B31 (1998) Orders of magnitude difference due to e-e correlation Ne W/cm 2 E y (t) non-sequential W/cm 2 Moshammer et al. PRL 2000

Non-sequential Double Ionisation Kuchiev 1987 Schafer et al Ne 2+ Time delay Double peak structure E y (t)

Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fields Experiment - The “Reaction-Microscope” Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

Ion Induced femtosec Fields Example: Electron Capture p p i p p f He Ne 6+ Ne 7+ v P = 0.36 a.u.  I  W/cm 2  t  b/ v p  0.3 fs t t p r b~5 a.u.

Electron Capture: Precision Spectr. Ne 6+ Ne 7+  p p  p r p r|| = Q /v p -v p /2 = p r   p p | v P = 0.36 a.u.  He 1+ p r p p f p p i

Electron Capture: Precision Spectr. capture into n=4 excellent resolution: 0.7eV FWHM excellent precision: meV many states resolved simultaneously no selection rules

Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fields Experiment - The “Reaction-Microscope” Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

Studies with Highly Charged Ions 1.Precision Spectroscopy 2.Dynamics of formation: many-electron flux (correlated?) 3. Rearrangement processes Questions : Formation of ”hollow atoms”  t ≈ 1 fs HCI from HITRAP HCI Target  X-rays Auger cascades E~keV/amu Reaction-Microscope

The HITRAP Reaction Microscope large area ion detector with hole multi-hit electron detector (up to 10 e - ) large area photon detectors Increased Acceptance and Q-Value Resolution Coincident detection of ions, electrons and photons

Atomic & Molecular Break-Up - Intense femtosec Laser Pulses - Ion induced femtosec fields Experiment - The “Reaction-Microscope” Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

Laser Assisted Electron Capture Laser & ion induced fields combined p p i p p f He Ne 6+ Ne 7+ v P = 0.36 a.u.  I  W/cm 2  t  b/ v p  0.3 fs t t p r b~5 a.u. Laser I ~ W/cm 2,  ~ ns

Laser Assisted Electron Capture Intensity W/cm 2 Ion Longitudinal Momentum Impact Parameter Ion Longitudinal Momentum  p p  p r p r|| = Q /v p -v p /2 = p r   p p |  p r p p f p p i + p drift (  t 0 )

Laser Assisted Electron Capture Impact Parameter Ion Longitudinal Momentum T.Kirchner PRL p drift (  t 0 )  p p  p r p r|| = Q /v p -v p /2 = p r   p p |  p r p p f p p i Intensity W/cm 2 Ion Longitudinal Momentum Impact Parameter Probability

Laser Assisted Electron Capture Impact Parameter Ion Longitudinal Momentum Impact Parameter Probability T.Kirchner PRL 2002  p p  p r p r|| = Q /v p -v p /2 = p r   p p |  p r + p drift (  t 0 ) p p f p p i Intensity W/cm 2 Ion Longitudinal Momentum

Atomic & Molecular Break-Up - Intense femtosec Laser Pulses - Ion induced femtosec fields Experiment - The “Reaction-Microscope” Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

Sub-attosecond Ion Induced Fields + e-e- He 2+  Heisenberg’s as microscope 1 GeV/amu U 92+ :  =2, v p = 120 a.u. b=2 a.u. He  40 as + I  W/cm 2  t  b/ (  v p ) =0.2 as “Instantané” of the initial two (many)-electron wave function Ex. Double ionisation of He by 100 MeV/amu C 6+ Bapat et al. JPB 2000

Sub-attosecond Ion Induced Fields Intense relativistic HCI beams at GSI Heisenberg’s as microscope

R. Moshammer, H. Kollmus, D. Fischer, B. Feuerstein, C. Höhr, A. Dorn, C.D. Schröter, A. Rudenko, C. Dimopoulou, K. Zrost, V. Jesus, J. R. Crespo Lopez-Urrutia, A. Voitkiv, T. Kirchner, J. Ullrich Max-Planck Institut, Heidelberg H. Rottke, C. Trump, B. Bapat E. Eremina, W. Sandner UMR, Rolla M. Schulz, R.E. Olson, D. Madison Max-Born Institut, Berlin Navrangpura, India GSI, Darmstadt S. Hagmann, R. Mann

Electron Capture: Precision Spectr.

Recoil Ion Momentum Spectroscopy Electron detector supersonic gas-jet drift Helmholtz coils: projectile beam electrons recoil ions E-field B-field Ion detector

Reaction Microscope Ar + Ar 2 + Ar ++ 1 cm Ar 2 + Ar + +U o a d +U detector Ar ++

Intense Laser: Single Ionisation  =30 fs E y (t) t I  W/cm 2 pulse T=2  /  =2.7 fs Drift momentum t  t 0 = 0  t 0 = 45  t 0 = 90 E y (t) Moshammer et al. PRL 2000 Ponderomotive potential

Rescattering: Dynamics t E y (t) y(t) e1e1 Ne 1+ e2e2 e1e1 Ne 2+ time delay t0t0