Christina Dimopoulou Max-Planck-Institut für Kernphysik, Heidelberg IPHE, Université de Lausanne, Exploring atomic fragmentation with COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy)
Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fields Experiment - The “Reaction-Microscope” Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields
Momentum Spectroscopy: Principle piccolo sparkling wine champagne landing zone (detector) velocity, angle time-of-flight and landing position => initial velocity and angle i.e. initial momentum vector
electrons position sensitive multi-hit Projectile: Cold Target: supersonic atomic jet molecules clusters Detectors: recoil ions E-field Recoil Ion Momentum Spectroscopy single photons intense lasers charged particles t; x,y,z) ~ eV B-field ~ meV Reaction Microscope
Ion Time-of-flight Ar + Ar 2 + Ar ++ H2O+H2O+ H2+H2+ Ex. Multi-photon ionisation of Ar p || [a.u.] 0.5 Ar + N=12 N=13 N=11 N= eV detector +U o a d +U ion trajectory
Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fields Experiment - The “Reaction-Microscope” Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields
Single Photons... Intense Laser Target Jet Laser Ion Detector Electron Detector Ti:Sa Laser photon energy: 1.5 eV (T=2.7 fs) pulse length (FWHM): 30 fs intensity: I max ~10 16 W/cm 2 repetition rate: 3 kHz
Multi-photon Single Ionisation electrons E R = E e /M R electron Ar 1+ E e = N h - I p, N>10 P e = - P R I W/cm 2 h = 1.56 eV P = E /c 0
Intense Laser: Single Ionisation =30 fs E y (t) t I W/cm 2 pulse T=2 / =2.7 fs Drift momentum 2. t t 0 = 0 t 0 = 45 t 0 = 90 E y (t) Moshammer et al. PRL 2000 tunneling P ion =-P e 0 e 1 1.
Intense Laser : Double Ionisation sequential Larochelle et. al J. Phys. B31 (1998) Orders of magnitude difference due to e-e correlation Ne W/cm 2 E y (t) non-sequential W/cm 2 Moshammer et al. PRL 2000
Non-sequential Double Ionisation Kuchiev 1987 Schafer et al Ne 2+ Time delay Double peak structure E y (t)
Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fields Experiment - The “Reaction-Microscope” Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields
Ion Induced femtosec Fields Example: Electron Capture p p i p p f He Ne 6+ Ne 7+ v P = 0.36 a.u. I W/cm 2 t b/ v p 0.3 fs t t p r b~5 a.u.
Electron Capture: Precision Spectr. Ne 6+ Ne 7+ p p p r p r|| = Q /v p -v p /2 = p r p p | v P = 0.36 a.u. He 1+ p r p p f p p i
Electron Capture: Precision Spectr. capture into n=4 excellent resolution: 0.7eV FWHM excellent precision: meV many states resolved simultaneously no selection rules
Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fields Experiment - The “Reaction-Microscope” Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields
Studies with Highly Charged Ions 1.Precision Spectroscopy 2.Dynamics of formation: many-electron flux (correlated?) 3. Rearrangement processes Questions : Formation of ”hollow atoms” t ≈ 1 fs HCI from HITRAP HCI Target X-rays Auger cascades E~keV/amu Reaction-Microscope
The HITRAP Reaction Microscope large area ion detector with hole multi-hit electron detector (up to 10 e - ) large area photon detectors Increased Acceptance and Q-Value Resolution Coincident detection of ions, electrons and photons
Atomic & Molecular Break-Up - Intense femtosec Laser Pulses - Ion induced femtosec fields Experiment - The “Reaction-Microscope” Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields
Laser Assisted Electron Capture Laser & ion induced fields combined p p i p p f He Ne 6+ Ne 7+ v P = 0.36 a.u. I W/cm 2 t b/ v p 0.3 fs t t p r b~5 a.u. Laser I ~ W/cm 2, ~ ns
Laser Assisted Electron Capture Intensity W/cm 2 Ion Longitudinal Momentum Impact Parameter Ion Longitudinal Momentum p p p r p r|| = Q /v p -v p /2 = p r p p | p r p p f p p i + p drift ( t 0 )
Laser Assisted Electron Capture Impact Parameter Ion Longitudinal Momentum T.Kirchner PRL p drift ( t 0 ) p p p r p r|| = Q /v p -v p /2 = p r p p | p r p p f p p i Intensity W/cm 2 Ion Longitudinal Momentum Impact Parameter Probability
Laser Assisted Electron Capture Impact Parameter Ion Longitudinal Momentum Impact Parameter Probability T.Kirchner PRL 2002 p p p r p r|| = Q /v p -v p /2 = p r p p | p r + p drift ( t 0 ) p p f p p i Intensity W/cm 2 Ion Longitudinal Momentum
Atomic & Molecular Break-Up - Intense femtosec Laser Pulses - Ion induced femtosec fields Experiment - The “Reaction-Microscope” Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields
Sub-attosecond Ion Induced Fields + e-e- He 2+ Heisenberg’s as microscope 1 GeV/amu U 92+ : =2, v p = 120 a.u. b=2 a.u. He 40 as + I W/cm 2 t b/ ( v p ) =0.2 as “Instantané” of the initial two (many)-electron wave function Ex. Double ionisation of He by 100 MeV/amu C 6+ Bapat et al. JPB 2000
Sub-attosecond Ion Induced Fields Intense relativistic HCI beams at GSI Heisenberg’s as microscope
R. Moshammer, H. Kollmus, D. Fischer, B. Feuerstein, C. Höhr, A. Dorn, C.D. Schröter, A. Rudenko, C. Dimopoulou, K. Zrost, V. Jesus, J. R. Crespo Lopez-Urrutia, A. Voitkiv, T. Kirchner, J. Ullrich Max-Planck Institut, Heidelberg H. Rottke, C. Trump, B. Bapat E. Eremina, W. Sandner UMR, Rolla M. Schulz, R.E. Olson, D. Madison Max-Born Institut, Berlin Navrangpura, India GSI, Darmstadt S. Hagmann, R. Mann
Electron Capture: Precision Spectr.
Recoil Ion Momentum Spectroscopy Electron detector supersonic gas-jet drift Helmholtz coils: projectile beam electrons recoil ions E-field B-field Ion detector
Reaction Microscope Ar + Ar 2 + Ar ++ 1 cm Ar 2 + Ar + +U o a d +U detector Ar ++
Intense Laser: Single Ionisation =30 fs E y (t) t I W/cm 2 pulse T=2 / =2.7 fs Drift momentum t t 0 = 0 t 0 = 45 t 0 = 90 E y (t) Moshammer et al. PRL 2000 Ponderomotive potential
Rescattering: Dynamics t E y (t) y(t) e1e1 Ne 1+ e2e2 e1e1 Ne 2+ time delay t0t0