IEEE NSS 2012 IEEE NSS 2007 Honolulu, HI Best Student Paper (A. Lechner) IEEE TNS April 2009 Same geometry, primary generator and energy deposition scoring.

Slides:



Advertisements
Similar presentations
Precision validation of Geant4 electromagnetic physics Katsuya Amako, Susanna Guatelli, Vladimir Ivanchenko, Michel Maire, Barbara Mascialino, Koichi Murakami,
Advertisements

Maria Grazia Pia, INFN Genova Atomic Relaxation Models A. Mantero, B. Mascialino, Maria Grazia Pia INFN Genova, Italy P. Nieminen ESA/ESTEC
Hee Seo, Chan-Hyeung Kim, Lorenzo Moneta, Maria Grazia Pia Hanyang Univ. (Korea), INFN Genova (Italy), CERN (Switzerland) 18 October 2010 Design, development.
Geant4-Genova Group Validation of Susanna Guatelli, Alfonso Mantero, Barbara Mascialino, Maria Grazia Pia, Valentina Zampichelli INFN Genova, Italy IEEE.
Electron Backscattering Jeff Martin University of Winnipeg Outline: Motivation Experimental Setup Results and Comparisons See also: nucl-ex/ Phys.
MONTE-CARLO TECHNIQUES APPLIED TO PROTON DOSIMETRY AND RADIATION SAFETY F. Guillaume, G. Rucka, J. Hérault, N. Iborra, P. Chauvel 1 XXXV European Cyclotron.
OVERVIEW NEDA Introduction to the Simulations – Geometry The Simulations Conclusions 3.7% This work summarizes the introduction to the simulations of.
Max-Planck-Institut für extraterrestrische Physik and Halbleiterlabor, Germany Space Sciences Lab., UC Berkeley, USA CNES, Toulouse, France INFN Genova.
1Calice-UK Cambridge 9/9/05D.R. Ward David Ward Compare Feb’05 DESY data with Geant4 and Geant3 Monte Carlos. Work in progress – no definitive conclusions.
Bruce Faddegon, UCSF Inder Daftari, UCSF Joseph Perl, SLAC
J. Tinslay 1, B. Faddegon 2, J. Perl 1 and M. Asai 1 (1) Stanford Linear Accelerator Center, Menlo Park, CA, (2) UC San Francisco, San Francisco, CA Verification.
Jianchun Wang Marina Artuso Syracuse University 11/06/00 MC Simulation of Silicon Pixel Detector.
etc… Analysing samples with complex geometries Particles Inclusions
Validation of the Bremsstrahlung models Susanna Guatelli, Barbara Mascialino, Luciano Pandola, Maria Grazia Pia, Pedro Rodrigues, Andreia Trindade IEEE.
Geant4-INFN (Genova-LNS) Team Validation of Geant4 electromagnetic and hadronic models against proton data Validation of Geant4 electromagnetic and hadronic.
Maria Grazia Pia Systematic validation of Geant4 electromagnetic and hadronic models against proton data Systematic validation of Geant4 electromagnetic.
Geant4 simulation of the attenuation properties of plastic shield for  - radionuclides employed in internal radiotherapy Domenico Lizio 1, Ernesto Amato.
Evaluation of G4 Releases in CMS (Sub-detector Studies) Software used Electrons in Tracker Photons in the Electromagnetic Calorimeter Pions in the Calorimeter.
Electron-impact inner shell ionization cross section measurements for heavy element impurities in fusion reactors Jingjun Zhu Institute of Nuclear Science.
Geant4: Electromagnetic Processes 2 V.Ivanchenko, BINP & CERN
SOI detector Geant4-based studies to characterise the tissue-equivalence of SOI and diamond microdosimeteric detectors, under development at CMRP S. Dowdell,
Alfonso Mantero, INFN Genova Models for the Simulation of X-Ray Fluorescence and PIXE A. Mantero, S. Saliceti, B. Mascialino, Maria Grazia Pia INFN Genova,
Summary of Work Zhang Qiwei INFN - CIAE. Validation of Geant4 EM physics for gamma rays against the SANDIA, EPDL97 and NIST databases.
Maria Grazia Pia, INFN Genova Methods and techniques for Monte Carlo physics validation MC April 2015, Nashville, TN, USA C. Choi, M. C. Han,
Design of the Photon Collimators for the ILC Positron Helical Undulator Adriana Bungau The University of Manchester Positron Source Meeting, July 2008.
Automated Electron Step Size Optimization in EGS5 Scott Wilderman Department of Nuclear Engineering and Radiological Sciences, University of Michigan.
TWIST Measuring the Space-Time Structure of Muon Decay Carl Gagliardi Texas A&M University TWIST Collaboration Physics of TWIST Introduction to the Experiment.
Validation and TestEm series Michel Maire for the Standard EM group LAPP (Annecy) July 2006.
Precision Analysis of Electron Energy Deposition in Detectors Simulated by Geant4 M. Bati č, S. Granato, G. Hoff, M.G. Pia, G. Weidenspointner 2012 NSS-MIC.
FRANK LABORATORY OF NEUTRON PHYSICS ION BEAM ANALYSIS STANCIU-OPREAN LIGIA SUPERVISOR DR. KOBZEV ALEXANDER.
DDEP 2012 | C. Bisch – Study of beta shape spectra 1 Study of the shape of  spectra Development of a Si spectrometer for measurement of  spectra 
IEEE NSS October – 2 November 2013 Seoul, Korea T. Basaglia 1, M. Batic 2, M. C. Han 3, G. Hoff 4, C. H. Kim 3, H. S. Kim 3, M. G. Pia 5, P. Saracco.
Tests of a Digital Hadron Calorimeter José Repond Argonne National Laboratory CALICE Collaboration Meeting March 10 – 12, 2010 University of Texas at Arlington.
ENDF/B-VI Coupled Photon-Electron Data for Use in Radiation Shielding Applications by Dermott E. Cullen Lawrence Livermore National Laboratory & Robert.
Validation of inner shell ionization cross sections for electron transport Sung Hun, Kim Nuclear Engineering, Hanyang University, Seoul, Republic of Korea.
Simulation of the energy response of  rays in CsI crystal arrays Thomas ZERGUERRAS EXL-R3B Collaboration Meeting, Orsay (France), 02/02/ /03/2006.
Precision Validation of Geant4 Electromagnetic Physics Geant4 DNA Project Meeting 26 July 2004, CERN Michela.
COSIRES 2004 © Matej Mayer Bayesian Reconstruction of Surface Roughness and Depth Profiles M. Mayer 1, R. Fischer 1, S. Lindig 1, U. von Toussaint 1, R.
Precision analysis of Geant4 condensed transport effects on energy deposition in detectors M. Batič 1,2, G. Hoff 1,3, M. G. Pia 1 1 INFN Sezione di Genova,
Effects of Surrounding Materials on Proton-Induced Energy Deposition in Large Silicon Diode Arrays Christina L. Howe 1, Robert A. Weller 1, Robert A. Reed.
G4 Validation meeting (5/11/2003) S.VIRET LPSC Grenoble Photon testbeam Data/G4 comparison  Motivation  Testbeam setup & simulation  Analysis & results.
1ECFA/Vienna 16/11/05D.R. Ward David Ward Compare these test beam data with Geant4 and Geant3 Monte Carlos. CALICE has tested an (incomplete) prototype.
DVCS – Hall A Study of the Background Noise HUGS 2008 Florian ITARD.
Event Analysis for the Gamma-ray Large Area Space Telescope Robin Morris, RIACS Johann Cohen-Tanugi SLAC.
Target Simulations for Hadron, Electron and Heavy-Ion Beams 2 nd High-Power Targetry Workshop Oak Ridge, TN October 10-14, 2005 Fermilab High-Power Targetry.
Dec 2004 Low Energy backgrounds in the TESLA IR Impact on feedback BPMs FONT collaboration  QMUL: P Burrows, G Christian, C Clarke, G White, S Molloy.
Adele Rimoldi, Pavia University & INFN – CERN G4usersWorkshop Nov H8 Muon Testbeam Simulation CERN - 14 November, 2002 and the Physics Validation.
Dec 2004 Simulation of Low Energy backgrounds in the TESLA IR Impact on feedback BPMs FONT collaboration  QMUL: P Burrows, G Christian, C Clarke, G White,
P. Rodrigues, A. Trindade, L.Peralta, J. Varela GEANT4 Medical Applications at LIP GEANT4 Workshop, September – 4 October LIP – Lisbon.
Radiation Shielding Assessment for MuCool Experimental Enclosure C. Johnstone 1), I. Rakhno 2) 1) Fermi National Accelerator Laboratory, Batavia, Illinois.
Validation of the bremssrahlung process IV Workshop on Geant4 physics validation Susanna Guatelli, Luciano Pandola, Maria Grazia Pia, Valentina Zampichelli.
Validation of Geant4 EM physics for gamma rays against the SANDIA, EPDL97 and NIST databases Zhang Qiwei INFN-LNS/CIAE 14th Geant4 Users and Collaboration.
Validation of Geant4 (V4.2) for GLAST-LAT -Comparison with Theory, Beam Test Data and EGS4 – S. Ogata, T. Mizuno, H. Mizushima (Hiroshima/SLAC) P. Valtersson,
1 Activation by Medium Energy Beams V. Chetvertkova, E. Mustafin, I. Strasik (GSI, B eschleunigerphysik), L. Latysheva, N. Sobolevskiy (INR RAS), U. Ratzinger.
Validation of GEANT4 versus EGSnrc Yann PERROT LPC, CNRS/IN2P3
MCS overview in radiation therapy
1 Transmission Coefficients and Residual Energies of Electrons: PENELOPE Results and Empirical Formulas Tatsuo Tabata and Vadim Moskvin * Osaka Prefecture.
1Malcolm Ellis - G4 Physics Validation Meeting - 17th July 2006 MuScat Validation of G4  Muon Scattering (MuScat) Experiment u Motivation: Ionisation.
Physics performance of a DHCAL with various absorber materials Jan BLAHA CALICE Meeting, 16 – 18 Sep. 2009, Lyon, France.
A Study of Reverse MC and Space Charge Effect Simulation with Geant4
by students Rozhkov G.V. Khalikov E.V. scientific adviser Iyudin A.F.
Models for the Simulation of X-Ray Fluorescence and PIXE
Geant4 and Fano cavity : where are we ?
CEA – Saclay, DRT/LNHB/LMD, Gif-sur-Yvette, France
A. R. Garcia, E. Mendoza and D. Cano-Ott
Status of Compton Analysis
The Hadrontherapy Geant4 advanced example
Precision validation of Geant4 electromagnetic physics
G. A. P. Cirrone1, G. Cuttone1, F. Di Rosa1, S. Guatelli1, A
The Geant4 Hadrontherapy Advanced Example
Presentation transcript:

IEEE NSS 2012 IEEE NSS 2007 Honolulu, HI Best Student Paper (A. Lechner) IEEE TNS April 2009 Same geometry, primary generator and energy deposition scoring reused for the results presented in this talk Verification of consistency: published/new results in same configuration Geant4 8.1p02 Geant4 9.1

IEEE NSS 2012 High precision measurements intended for simulation validation Traditionally considered a reference for Monte Carlo codes

IEEE NSS 2012 Experimental set-up Beam energy: 25 keV – 1 MeV Incidence angles: 0 o, 30 o, 60 o Be, C, Al, Fe, Cu, Mo, Ta, U Be, C, Al, Ti, Mo, Ta, U Targets: [Sandia79] [Sandia80] Experimental uncertainties: % (nominal) Energy deposition profile Total deposited energy Measure:

IEEE NSS 2012 Simulation configuration infinite layer e - beam calorimeter front foil Sandia79: calorimeter placed at different depths Calorimeter and front/infinite layers: same material Geometry : as in experiment Mass geometry + readout geometry Geometry : as in experiment Mass geometry + readout geometry e/  physics low energy EEDL/EPDL (“Livermore”) low energy – Penelope Standard e/  physics low energy EEDL/EPDL (“Livermore”) low energy – Penelope Standard Multiple scattering Urban* Goudsmit-Saunderson Multiple scattering Urban* Goudsmit-Saunderson Step limitation 1, 10, 1000  m no step limitation Step limitation 1, 10, 1000  m no step limitation Secondary production threshold 250 eV (low energy) 1 keV (standard) Secondary production threshold 250 eV (low energy) 1 keV (standard) Sandia80: whole volume is sensitive Geant4 versions 8.1, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6-  (with latest patch applied) Geant4 versions 8.1, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6-  (with latest patch applied)

IEEE NSS 2012 Validation analysis Compatibility of experiment-simulation:  2 test  2 test case = target material, beam energy, beam angle Significance of the  2 test:  = 0.01  G4model = N  >0.01 N tot efficiency of a Geant4 physics model fraction of test cases in which simulation is compatible with experiment Categorical analysis to determine whether two Geant4 physics models, or two Geant4 versions differ significantly in accuracy Categorical analysis to determine whether two Geant4 physics models, or two Geant4 versions differ significantly in accuracy Contingency tables whole sample matched pairs Fisher’s exact test Barnard’s exact test Pearson’s  2 test  2 test with Yates continuity correction McNemar’s test (matched pairs)

IEEE NSS 2012 Energy deposition profile C, 1 MeV Geant  similar to 9.5 Most accurate Geant4 version: 9.1 Most accurate Geant4 model: Livermore-9.1 Most accurate Geant4 version: 9.1 Most accurate Geant4 model: Livermore-9.1 p-value Geant equivalence: p-value Livermore-Penelope: p-value Livermore-Standard: <0.001

IEEE NSS 2012 Total energy deposition Efficiency vs. Geant4 version in a single volume of elemental material (the simplest test case one can think of) Dependency on step limitation observed in Geant4 9.4

IEEE NSS 2012 Multiple scattering models G4 Version Range Factor Step Limitation Lateral Displacementskin geom Factor ModelProcess 8.1. p G4UrbanMscModelG4MultipleScattering 9.1. p fUseSafetyTRUE02.5G4UrbanMscModelG4MultipleScattering 9.2. p fUseSafetyTRUE32.5G4UrbanMscModelG4MultipleScattering 9.3. p fUseSafetyTRUE32.5G4UrbanMscModel92G4MultipleScattering 9.4. p fUseSafetyTRUE12.5G4UrbanMscModel93G4eMultipleScattering 9.5. p fUseSafetyTRUE12.5G4UrbanMscModel95G4eMultipleScattering 9.6. b fUseSafetyTRUE12.5G4UrbanMscModel95G4eMultipleScattering Further tests in progress to evaluate the effects of different parameter values and models in the Sandia79/80 test configuration

IEEE NSS 2012 O. Kadri, V. Ivanchenko, F. Gharbi, A. Trabelsi Incorporation of the Goudsmit–Saunderson electron transport theory in the Geant4 Monte Carlo code NIM B, Vol. 267, no.23–24, pp. 3624–3632, Dec  2 test Geant4 9.3p02 (Sep. 2010): p-value = Geant4 9.5p01 (Mar. 2012): p-value = Experimental data from Sandia-79 report Goudsmit-Saunderson multiple scattering model Al 521 keV G4GoudsmitSaundersonModel - for electrons and positrons 9.3p029.4p049.5p01 G-S0.13± ±0.06 Urban0.27± ± ±0.09 Efficiency (with “Livermore” e/  models)

IEEE NSS 2012 Penelope re-implementation Geant4 9.1: Penelope 2001 Geant4 9.5: Penelope 2008 (default) Penelope 2001 (available) Model Geant4 9.1 p03 Geant4 9.5 p01 Penelope ± ± 0.07 Penelope ± 0.06 EEDL-EPDL0.73 ± ±0.09 Penelope 2008 model does not appear to have improved Geant4 simulation accuracy w.r.t. Penelope 2001, nor w.r.t. EEDL/EPDL (“Livermore”) models