Progress in the Development of a B-Factory Monolithic Active Pixel Detector Samo Stanič for the Belle Pixel Group M. Barbero 1, A. Bozek 4, T. Browder.

Slides:



Advertisements
Similar presentations
The Belle Silicon Vertex Detector T. Tsuboyama (KEK) 6 Dec Workshop New Hadrons with Various Flavors 6-7 Dec Nagoya Univ.
Advertisements

Simulation Studies of a (DEPFET) Vertex Detector for SuperBelle Ariane Frey, Max-Planck-Institut für Physik München Contents: Software framework Simulation.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
Summary of the SVD session 19 March 2009 T. Tsuboyama (KEK)
The Belle II Silicon Vertex Detector Readout Chain Markus Friedl (HEPHY Vienna) TWEPP2012, 19 September 2012.
The Origami Chip-on-Sensor Concept for Low-Mass Readout of Double-Sided Silicon Detectors M.Friedl, C.Irmler, M.Pernicka HEPHY Vienna.
For high fluence, good S/N ratio thanks to: Single strip leakage current I leak  95nA at T  -5C Interstrip capacitance  3pF SVX4 chip 10 modules fully.
Striplet option of Super Belle Silicon Vertex Detector Talk at Joint Super B factory workshop, Honolulu 20 April 2005 T.Tsuboyama.
The Belle SVD Trigger  Tom Ziegler  Vertex 2002  Kailua-Kona, Hawaii, 4-8 th nov The Belle SVD Trigger Tom Ziegler on behalf of the Belle SVD.
Research and Development for the HFT at STAR Leo Greiner BNL DAC 03/15/2006.
M.Friedl, C.Irmler, M.Pernicka HEPHY Vienna
15-17 December 2003ACFA workshop, Mumbai - A.Besson R&D on CMOS sensors Development of large CMOS Sensors Characterization of the technology without epitaxy.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
Fine Pixel CCD Option for the ILC Vertex Detector
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
APV25 for SuperBelle SVD M.Friedl HEPHY Vienna. 2Markus Friedl (HEPHY Vienna)11 Dec 2008 APV25 Developed for CMS by IC London and RAL (70k chips installed)
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
Recent progress in the Development of a B- Factory Monolithic Active Pixel Detector Samo Stanič for the Belle Pixel Group H. Aihara 5, M. Barbero 1, A.
Pixel hybrid status & issues Outline Pixel hybrid overview ALICE1 readout chip Readout options at PHENIX Other issues Plans and activities K. Tanida (RIKEN)
Detector R&D for Muon Chamber Anand K. Dubey For VECC group.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Phase 2 Tracker R&D Background: Initial work was in the context of the long barrel on local tracklet- based designs. designs of support structures and.
University of Nova GoricaBelle Collaboration S. Stanič, STD6, Sep , 2006 Status of the Belle Silicon Vertex Detector and its Development for Operation.
The ALICE Forward Multiplicity Detector Kristján Gulbrandsen Niels Bohr Institute for the ALICE Collaboration.
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
Super-Belle Vertexing Talk at Super B Factory Workshop Jan T. Tsuboyama (KEK) Super B factory Vertex group Please visit
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
FPCCD option Yasuhiro Sugimoto 2012/5/24 ILD 1.
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
UK Activities on pixels. Adrian Bevan 1, Jamie Crooks 2, Andrew Lintern 2, Andy Nichols 2, Marcel Stanitzki 2, Renato Turchetta 2, Fergus Wilson 2. 1 Queen.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
BTeV Hybrid Pixels David Christian Fermilab July 10, 2006.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
11 June 2015 Thomas Bergauer (HEPHY Vienna) Belle II SVD beam Test SPS 2015 SPS users meeting.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
M. Deveaux, CBM-Collaboration-Meeting, 25 – 28. Feb 2008, GSI-Darmstadt Considerations on the material budget of the CBM Micro Vertex Detector. Outline:
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
Abstract Beam Test of a Large-area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System V. Bhopatkar, M. Hohlmann, M. Phipps, J. Twigger,
WG3 – STRIP R&D ITS - COMSATS P. Riedler, G. Contin, A. Rivetti – WG3 conveners.
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
1 CDC Readout - upgrade for Higher Luminosity - Y.Sakai (KEK) 29-Oct-2002 TRG/DAQ Review of Status/Plan (based on materials from S.Uno/M.Tanaka)
The LHCb Vertex Locator Lars Eklund LHCb VELO Group of the LHCb Collaboration CERN (Geneva), EPFL (Lausanne), NIKHEF (Amsterdam), University of Glasgow,
MIMO  3 Preliminary Test Results. MIMOSTAR 2 16/05/2007 MimoStar3 Status Evaluation of MimoStar2 chip  Test in Laboratory.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
Rene BellwiedSTAR Tracking Upgrade Meeting, Boston, 07/10/06 1 ALICE Silicon Pixel Detector (SPD) Rene Bellwied, Wayne State University Layout, Mechanics.
RD program on hybrids & Interconnects Background & motivation At sLHC the luminosity will increase by a factor 10 The physics requirement on the tracker.
Upgrade with Silicon Vertex Tracker Rachid Nouicer Brookhaven National Laboratory (BNL) For the PHENIX Collaboration Stripixel VTX Review October 1, 2008.
1 FANGS for BEAST J. Dingfelder, A. Eyring, Laura Mari, C. Marinas, D. Pohl University of Bonn
Giulio Pellegrini Actividades 3D G. Pellegrini, C. Fleta, D. Quirion, JP Balbuena, D. Bassignana.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
L. Bosisio - 2nd SuperB Collaboration Meeting - Frascati SuperB SVT Update on sensor and fanout design in Trieste Irina Rashevskaya, Lorenzo.
Pixel detector/Readout for SuperB T.Kawasaki Niigata-U.
The SuperB Silicon Vertex Tracker Abstract : The SuperB project aims to build an asymmetric e+ - e- collider capable of reaching.
Update on & SVT readout chip requirements
 Silicon Vertex Detector Upgrade for the Belle II Experiment
FBK / INFN Roma, November , 17th 2009 G. Darbo - INFN / Genova
BaBar Silicon Tracker Perspective
INFN Pavia and University of Bergamo
Requirements and Specifications for Si Pixels Sensors
First Testbeam results
The SuperB Silicon Vertex Tracker
Vertex Detector Overview Prototypes R&D Plans Summary.
A new family of pixel detectors for high frame rate X-ray applications Roberto Dinapoli†, Anna Bergamaschi, Beat Henrich, Roland Horisberger, Ian Johnson,
R&D of CMOS pixel Shandong University
Perugia SuperB Workshop June 16-19, 2009
Presentation transcript:

Progress in the Development of a B-Factory Monolithic Active Pixel Detector Samo Stanič for the Belle Pixel Group M. Barbero 1, A. Bozek 4, T. Browder 1, F. Fang 1, M. Hazumi 3, J. Kennedy 1, N. Kent 1, S. Olsen 1, H. Palka 4, M. Rosen 1, L. Ruckman 1, S. Stanič 2, K. Trabelsi 1, T. Tsuboyama 3, K. Uchida 1, G. Varner 1 and Q. Yang 1 1 University of Hawaii, 2 University of Tsukuba, 3 High Energy Accelerator Research Organization (KEK), 4 H. Niewondiczanski Institute of Nuclear Physics SVD Upgrade Meeting 2005/04/12

Samo Stanič for the Pixel Group /4/12 1 Conventional solutions (Si strips) will not work… 2. Improve impact parameter resolution? ~10%~4% ~2% Present Belle SVD2 Motivation SuperKEKB luminosity increase: L~1.5 x → L~5 x cm -2.s Reduce SVD occupancy Present : layer 1 of SVD ~10% occupancy / 200 Krad.yr -1 Upgrade: Super-Belle ~ 20 – 50 x (?) expected background increase

Samo Stanič for the Pixel Group /4/ mm Solution at hand: “Striplet” New type of short DSSD sensors: “Striplets” –Shorter strip length, strips arranged at 45 degrees –Small triangle dead region exists (about 7 % in layer1) –Readout by APV25 chip developed for CERN –Occupancy is reduced to /cm 2 /s –Operation confirmed in KEK by the Vienna Group … Higher luminosity than that requires pixel type sensor! Z rφ Dead region 14mm 10mm U V From T. Kawasaki-san, Niigita-U, 6 th HL WS, 2004/11

Samo Stanič for the Pixel Group /4/ Low occupancy 2.Fast Readout Speed 3.Radiation Hardness 4.Thin Sensor 5.Full-sized detector prototype Natural alternative - Pixel type sensor Technology Choice CAP1 – basic functionality CAP2 – pipelined readout CAP3 – full-size/speed PVD1.0 Jun. KEK T943 Dec. FNAL MAPS XTEST2, LHC hybrid pixels T569 ~ Jun. KEK  Near Term (SVD2 Layer 1 drop-in)  IR upgrade Preliminary Design Report Requirements R&D steps Prototypes

Samo Stanič for the Pixel Group /4/12 4 Belle Pixel Sensor Evolution PVD1.0 CAP3 CAP2 pipelined readout full-size/speed CAP1 basic functionality time final detector technology choice

Samo Stanič for the Pixel Group /4/12 5 Candidate: Monolithic Active Pixel Sensor Current DSSD Because of large Capacitance, need Thick DSSDs -- APS can be VERY Thin 300  m MAPS 10  m Key Features Thermal charge collection (no HV) Thin - reduced multiple-scattering,  conversion, background  target NO bump bonding – fine pitch possible (8000x geometrical reduction) Standard CMOS process - “System on Chip” possible

Samo Stanič for the Pixel Group /4/12 6 Continuous Acquisition Pixel (CAP) Concept ADC & storage Pixel Array: Column select – ganged row read High-speed Analog read-out Low power – only significant draw at readout edge Pixel Array of pixels time Vreset Δv typ α I leak Δv sig α Q signal Integration time t fr2 t fr1 reset M1 M2 M3 Bus Output Reset Collection Electrode Based on 3 transistor cell V_Q_integr

Samo Stanič for the Pixel Group /4/12 7 CAP1 – Basic operation confirmed TSMC 0.35  m Process Column Ctrl Logic 1.8 mm 132col x 48row ~6 K pixels CAP1: simple 3-transistor cell Pixel size: 22.5  m x 22.5  m CAPs sample tested: all detectors (>15) function. Source follower buffering of collected charge Restores potential to collection electrode Reset Vdd Collection Electrode Gnd M1 M2 M3 Row Bus Output Column Select

Samo Stanič for the Pixel Group /4/12 8 Correlated Double Sampling (CDS) ( - ) Frame 1 - Frame 2 = 8ms integration - Leakage current Correction ~fA leakage current (typ) ~18fA for hottest pixel shown Can 20Hz ~ 16% live time (CAP1!) Self-Triggering mode Hit candidate!

Samo Stanič for the Pixel Group /4/12 9 Hit resolution measurement L3 L4 L2 “ hit ” Residuals for 4GeV/c pions: < 11  m (in both planes) (in mm) 250  m Si 1mm plastic 1mm Alumina substrate 3.4 cm 3.6 cm4.6 cm x-plane z-plane

Samo Stanič for the Pixel Group /4/12 10 Radiation damage Belle CAP1 Prototype IEEE Trans. Nucl. Sc. 48, ,2001 Fully annealed

Samo Stanič for the Pixel Group /4/12 11 Peak pixel S/N prediction Extrapolation from upper edges of Eid et al.

Samo Stanič for the Pixel Group /4/12 12 CAP2 – Pipelined operation 8 deep mini-pipeline in each cell Pixel size 22.5  m x 22.5  m 3-transistor cell 132x48=6336 channels samples TSMC 0.35  m 132 x  s frame acquisition speed achieved!

Samo Stanič for the Pixel Group /4/12 13 CAP3 – Full scale pipelined prototype 36 transistors/pixel 5 metal layers 5 sets CDS pairs TSMC 0.25  m Process 5-deep double pipeline

Samo Stanič for the Pixel Group /4/12 14 CAP3 - sensor layout 928 x 128 pixels = 118,784 ~4.3M transistors ! 21 mm Active area mm >93% active without active edge processing

Samo Stanič for the Pixel Group /4/12 15 CAP3 readout However: Some parts still missing CAP3 firmware still under development May be a few weeks delayed F3 board CAP3 F3 frontend readout board manufactured, laboratory testing is under way…

Samo Stanič for the Pixel Group /4/12 16 CAP3 based full detector concept e-e+ # of Detector / layer ~ 32 End view 128 x 928 pixels, 22.5  m 2 ~120 Kpixels / CAP  m process CAP3 5-layer flex PIXRO1 chip Pixel Readout Board (PROBE) Side view Half ladder scheme Double layer, offset structure r~8mm Length: 2x21mm ~ 4cm 17 o 30 o r~8mm

Samo Stanič for the Pixel Group /4/12 17 “Fast” Belle SVD2 L1 upgrade option ~10%~4% ~2% Replace Layer 1 with CAP3 pixels Mechanically identical (drop in) CAP3 Flex

Samo Stanič for the Pixel Group /4/12 18 Belle SVD L1 upgradeCAP3 Flex 4 x 9 = 36 CAP3 / L1 ladder 6 ladders/L1 layer ~26M Channels total Scaling current SVD L1 * 4 background ~ few kBytes/event R=7mm configuration: 6.6M channels SVD L1 * 40 background ~ few 100kBytes/event With L3 track match: ~few 10kBytes/event

Samo Stanič for the Pixel Group /4/12 19 CAP3 Beam-test at KEK Possibility of CAP3 beam test in the end of June 2005 as the last experiment at the KEK PS before its permanent shut-down We are fighting against the tight schedule and looking forward to new results!

Samo Stanič for the Pixel Group /4/12 20 Summary: Critical R&D Milestones 1.Readout Speed 2.Radiation Hardness 3.Thin Detector 4.Full-sized detector 100kHz frame rate, 10kHz L2 accept >= 20MRad <= 50  m, double layer Span acceptance (reticle limit) 10  s frame acquisition OK (CAP2), CAP3 to test 100  s frame readout Leakage current OK (CAP2), q collection efficiency TBD 50  m mechanical dummies, CAP3 to be thinned (SNF) CAP3 fabricated – performance evaluation

Samo Stanič for the Pixel Group /4/12 21