1 1 Slide Chapter 11 Comparisons Involving Proportions n Inference about the Difference Between the Proportions of Two Populations Proportions of Two Populations.

Slides:



Advertisements
Similar presentations
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
Advertisements

Chi Squared Tests. Introduction Two statistical techniques are presented. Both are used to analyze nominal data. –A goodness-of-fit test for a multinomial.
1 1 Slide © 2003 South-Western /Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Uji Kebaikan Suai (Uji Kecocokan) Pertemuan 23
Inference about the Difference Between the
Statistical Inference for Frequency Data Chapter 16.
1 1 Slide Mátgæði Kafli 11 í Newbold Snjólfur Ólafsson + Slides Prepared by John Loucks © 1999 ITP/South-Western College Publishing.
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide STATISTICS FOR BUSINESS AND ECONOMICS Seventh Edition AndersonSweeneyWilliams Slides Prepared by John Loucks © 1999 ITP/South-Western College.
1 1 Slide MA4704 Problem solving 4 Statistical Inference About Means and Proportions With Two Populations n Inferences About the Difference Between Two.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western /Thomson Learning.
Sampling Distribution of If and are normally distributed and samples 1 and 2 are independent, their difference is.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Discrete (Categorical) Data Analysis
1 1 Slide © 2009 Econ-2030-Applied Statistics-Dr. Tadesse. Chapter 11: Comparisons Involving Proportions and a Test of Independence n Inferences About.
Statistical Inference About Means and Proportions With Two Populations
1 Pertemuan 09 Pengujian Hipotesis Proporsi dan Data Katagorik Matakuliah: A0392 – Statistik Ekonomi Tahun: 2006.
Chapter 16 Chi Squared Tests.
Pengujian Hipotesis Proporsi dan Beda Proporsi Pertemuan 21 Matakuliah: I0134/Metode Statistika Tahun: 2007.
Irwin/McGraw-Hill © The McGraw-Hill Companies, Inc., 2000 LIND MASON MARCHAL 1-1 Chapter Thirteen Nonparametric Methods: Chi-Square Applications GOALS.
1 Pertemuan 09 Pengujian Hipotesis 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
Chapter 11a: Comparisons Involving Proportions and a Test of Independence Inference about the Difference between the Proportions of Two Populations Hypothesis.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1. State the null and alternative hypotheses. 2. Select a random sample and record observed frequency f i for the i th category ( k categories) Compute.
Goodness of Fit Test for Proportions of Multinomial Population Chi-square distribution Hypotheses test/Goodness of fit test.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
© 2004 Prentice-Hall, Inc.Chap 12-1 Basic Business Statistics (9 th Edition) Chapter 12 Tests for Two or More Samples with Categorical Data.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 11-1 Chapter 11 Chi-Square Tests Business Statistics, A First Course 4 th Edition.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide Slides by John Loucks St. Edward’s University.
1 1 Slide © 2005 Thomson/South-Western Chapter 10 Statistical Inference About Means and Proportions With Two Populations n Inferences About the Difference.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide © 2005 Thomson/South-Western Chapter 12 Tests of Goodness of Fit and Independence n Goodness of Fit Test: A Multinomial Population Goodness of.
Chapter 11 Chi-Square Procedures 11.3 Chi-Square Test for Independence; Homogeneity of Proportions.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Copyright © 2009 Cengage Learning 15.1 Chapter 16 Chi-Squared Tests.
1 1 Slide © 2006 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 In this case, each element of a population is assigned to one and only one of several classes or categories. Chapter 11 – Test of Independence - Hypothesis.
Chi-Square Procedures Chi-Square Test for Goodness of Fit, Independence of Variables, and Homogeneity of Proportions.
Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc Chapter 16 Chi-Squared Tests.
Learning Objectives Copyright © 2002 South-Western/Thomson Learning Statistical Testing of Differences CHAPTER fifteen.
Introduction to Probability and Statistics Thirteenth Edition Chapter 13 Analysis of Categorical Data.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1/71 Statistics Tests of Goodness of Fit and Independence.
Chapter Outline Goodness of Fit test Test of Independence.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 11 Analyzing the Association Between Categorical Variables Section 11.2 Testing Categorical.
1 1 Slide 統計學 Spring 2004 授課教師:統計系余清祥 日期: 2004 年 3 月 23 日 第六週:配適度與獨立性檢定.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Sampling Distribution of If and are normally distributed and samples 1 and 2 are independent, their difference is.
1 Pertemuan 24 Uji Kebaikan Suai Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 12 Tests of Goodness of Fit and Independence n Goodness of Fit Test: A Multinomial.
1. State the null and alternative hypotheses. 2. Select a random sample and record observed frequency f i for the i th category ( k categories) Compute.
Class Seven Turn In: Chapter 18: 32, 34, 36 Chapter 19: 26, 34, 44 Quiz 3 For Class Eight: Chapter 20: 18, 20, 24 Chapter 22: 34, 36 Read Chapters 23 &
Chi-Två Test Kapitel 6. Introduction Two statistical techniques are presented, to analyze nominal data. –A goodness-of-fit test for the multinomial experiment.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
Test of independence: Contingency Table
Chapter 11 – Test of Independence - Hypothesis Test for Proportions of a Multinomial Population In this case, each element of a population is assigned.
St. Edward’s University
St. Edward’s University
John Loucks St. Edward’s University . SLIDES . BY.
Statistics for Business and Economics (13e)
Econ 3790: Business and Economics Statistics
CHI SQUARE TEST OF INDEPENDENCE
Analyzing the Association Between Categorical Variables
Chapter Outline Goodness of Fit test Test of Independence.
St. Edward’s University
Presentation transcript:

1 1 Slide Chapter 11 Comparisons Involving Proportions n Inference about the Difference Between the Proportions of Two Populations Proportions of Two Populations n A Hypothesis Test for Proportions of a Multinomial Population Multinomial Population n Test of Independence: Contingency Tables H o : p 1 - p 2 = 0 H a : p 1 - p 2 = 0

2 2 Slide Inferences About the Difference Between the Proportions of Two Populations n Sampling Distribution of n Interval Estimation of p 1 - p 2 n Hypothesis Tests about p 1 - p 2

3 3 Slide Sampling Distribution of n Expected Value n Standard Deviation n Distribution Form If the sample sizes are large ( n 1 p 1, n 1 (1 - p 1 ), n 2 p 2, and n 2 (1 - p 2 ) are all greater than or equal to 5), the sampling distribution of can be approximated by a normal probability distribution.

4 4 Slide Interval Estimation of p 1 - p 2 : Large-Sample Case n Interval Estimate n Point Estimator of

5 5 Slide Example: MRA MRA (Market Research Associates) is conducting research to evaluate the effectiveness of a client’s new advertising campaign. Before the new campaign began, a telephone survey of 150 households in the test market area showed 60 households “aware” of the client’s product. The new campaign has been initiated with TV and newspaper advertisements running for three weeks. A survey conducted immediately after the new campaign showed 120 of 250 households “aware” of the client’s product. Does the data support the position that the advertising campaign has provided an increased awareness of the client’s product?

6 6 Slide n Point Estimator of the Difference Between the Proportions of Two Populations p 1 = proportion of the population of households p 1 = proportion of the population of households “aware” of the product after the new campaign “aware” of the product after the new campaign p 2 = proportion of the population of households p 2 = proportion of the population of households “aware” of the product before the new campaign “aware” of the product before the new campaign = sample proportion of households “aware” of the = sample proportion of households “aware” of the product after the new campaign product after the new campaign = sample proportion of households “aware” of the = sample proportion of households “aware” of the product before the new campaign product before the new campaign Example: MRA

7 7 Slide n Interval Estimate of p 1 - p 2 : Large-Sample Case For  =.05, z.025 = 1.96: For  =.05, z.025 = 1.96: (.0510) or -.02 to +.18 Conclusion Conclusion At a 95% confidence level, the interval estimate of the difference between the proportion of households aware of the client’s product before and after the new advertising campaign is -.02 to At a 95% confidence level, the interval estimate of the difference between the proportion of households aware of the client’s product before and after the new advertising campaign is -.02 to Example: MRA

8 8 Slide Hypothesis Tests about p 1 - p 2 n Hypotheses H 0 : p 1 - p 2 < 0 H 0 : p 1 - p 2 < 0 H a : p 1 - p 2 > 0 H a : p 1 - p 2 > 0 n Test statistic n Point Estimator of where p 1 = p 2 where:

9 9 Slide n Hypothesis Tests about p 1 - p 2 Can we conclude, using a.05 level of significance, that the proportion of households aware of the client’s product increased after the new advertising campaign? p 1 = proportion of the population of households “aware” of the product after the new campaign “aware” of the product after the new campaign p 2 = proportion of the population of households p 2 = proportion of the population of households “aware” of the product before the new campaign “aware” of the product before the new campaign HypothesesHypotheses H 0 : p 1 - p 2 < 0 H 0 : p 1 - p 2 < 0 H a : p 1 - p 2 > 0 H a : p 1 - p 2 > 0 Example: MRA

10 Slide n Hypothesis Tests about p 1 - p 2 Rejection Rule Reject H 0 if z > 1.645Rejection Rule Reject H 0 if z > Test StatisticTest Statistic Conclusion Do not reject H 0.Conclusion Do not reject H 0. Example: MRA

11 Slide A Hypothesis (Goodness of Fit) Test for Proportions of a Multinomial Population 1. Set up the null and alternative hypotheses. 2. Select a random sample and record the observed frequency, f i, for each of the k categories. 3. Assuming H 0 is true, compute the expected frequency, e i, in each category by multiplying the category probability by the sample size. 4. Compute the value of the test statistic. 5. Reject H 0 if (where  is the significance level and there are k - 1 degrees of freedom).

12 Slide Example: Finger Lakes Homes (A) n Multinomial Distribution Goodness of Fit Test Finger Lakes Homes manufactures four models of prefabricated homes, a two-story colonial, a ranch, a split-level, and an A-frame. To help in production planning, management would like to determine if previous customer purchases indicate that there is a preference in the style selected. The number of homes sold of each model for 100 sales over the past two years is shown below. Model Colonial Ranch Split-Level A-Frame Model Colonial Ranch Split-Level A-Frame # Sold # Sold

13 Slide Example: Finger Lakes Homes (A) n Multinomial Distribution Goodness of Fit Test Let: p C = population proportion that purchase a colonial p R = population proportion that purchase a ranch p S = population proportion that purchase a split-level p A = population proportion that purchase an A-frame HypothesesHypotheses H 0 : p C = p R = p S = p A =.25 H a : The population proportions are not p C =.25, p R =.25, p S =.25, and p A =.25 p R =.25, p S =.25, and p A =.25

14 Slide Example: Finger Lakes Homes (A) n Multinomial Distribution Goodness of Fit Test Expected FrequenciesExpected Frequencies e 1 =.25(100) = 25 e 2 =.25(100) = 25 e 1 =.25(100) = 25 e 2 =.25(100) = 25 e 3 =.25(100) = 25 e 4 =.25(100) = 25 e 3 =.25(100) = 25 e 4 =.25(100) = 25 Test StatisticTest Statistic = = = 10 = 10

15 Slide n Multinomial Distribution Goodness of Fit Test Rejection RuleRejection Rule With  =.05 and With  =.05 and k - 1 = = 3 degrees of k - 1 = = 3 degrees of freedom freedom ConclusionConclusion We reject the assumption there is no home style We reject the assumption there is no home style preference, at the.05 level of significance. preference, at the.05 level of significance. Example: Finger Lakes Homes (A) 22 2 Do Not Reject H 0 Reject H 0

16 Slide Example: Finger Lakes Homes (A) n Multinomial Distribution Goodness of Fit Test p -Value p -Value Using the Chi-Square Distribution table (Table 3 in Appendix B), we can approximate the p -value for this problem. Our test statistic of 10.0 is greater than    for  =.025. Thus, we know the p -value for this problem is no more than.025. Using the Chi-Square Distribution table (Table 3 in Appendix B), we can approximate the p -value for this problem. Our test statistic of 10.0 is greater than    for  =.025. Thus, we know the p -value for this problem is no more than.025. Minitab and Excel would provide a precise p - value. Minitab and Excel would provide a precise p - value.

17 Slide Test of Independence: Contingency Tables 1. Set up the null and alternative hypotheses. 2. Select a random sample and record the observed frequency, f ij, for each cell of the contingency table. 3. Compute the expected frequency, e ij, for each cell. 4. Compute the test statistic. 5. Reject H 0 if (where  is the significance level and with n rows and m columns there are ( n - 1)( m - 1) degrees of freedom).

18 Slide Example: Finger Lakes Homes (B) n Contingency Table (Independence) Test Each home sold can be classified according to price and to style. Finger Lakes Homes’ manager would like to determine if the price of the home and the style of the home are independent variables. Each home sold can be classified according to price and to style. Finger Lakes Homes’ manager would like to determine if the price of the home and the style of the home are independent variables. The number of homes sold for each model and price for the past two years is shown below. For convenience, the price of the home is listed as either $65,000 or less or more than $65,000. Price Colonial Ranch Split-Level A-Frame Price Colonial Ranch Split-Level A-Frame < $65, < $65, > $65, > $65,

19 Slide n Contingency Table (Independence) Test HypothesesHypotheses H 0 : Price of the home is independent of the style of the home that is purchased H 0 : Price of the home is independent of the style of the home that is purchased H a : Price of the home is not independent of the H a : Price of the home is not independent of the style of the home that is purchased style of the home that is purchased Expected FrequenciesExpected Frequencies Price Colonial Ranch Split-Level A-Frame Total Price Colonial Ranch Split-Level A-Frame Total < $65K > $65K Total Total Example: Finger Lakes Homes (B)

20 Slide n Contingency Table (Independence) Test Test StatisticTest Statistic = = 8.00 = = 8.00 Rejection RuleRejection Rule With  =.05 and (2 - 1)(4 - 1) = 3 d.f., With  =.05 and (2 - 1)(4 - 1) = 3 d.f., Reject H 0 if  2 > 7.81 Reject H 0 if  2 > 7.81 ConclusionConclusion We reject H 0, the assumption that the price of the home is independent of the style of the home that is purchased. We reject H 0, the assumption that the price of the home is independent of the style of the home that is purchased. Example: Finger Lakes Homes (B)

21 Slide The End of Chapter 11