JFEX baseline Uli Schäfer 1 Uli. Intro: L1Calo Phase-1 System / Jets Uli Schäfer 2 CPM JEM CMX Hub L1Topo ROD JMM PPR From Digital Processing System CPM.

Slides:



Advertisements
Similar presentations
GOLD Generic Opto Link Demonstrator Uli Schäfer 1.
Advertisements

JFEX Uli Schäfer 1 Mainz. Jet processing Phase-0 jet system consisting of Pre-Processor Analogue signal conditioning Digitization Digital signal processing.
GOLD down the drain Uli Schäfer 1 What’s left after Heidelberg.
JFEX Uli Schäfer 1 Uli Intro / overview / issues Draft, will change !!!! Some questions flagged.
GOLD Generic Opto Link Demonstrator Uli Schäfer 1.
Phase-0 Topological Processor Uli Schäfer Johannes Gutenberg-Universität Mainz Uli Schäfer 1.
L1Calo – towards phase II Mainz upgraders : B.Bauss, V.Büscher, R.Degele, A.Ebling, W.Ji, C.Meyer, S.Moritz, U.Schäfer, C.Schröder, E.Simioni, S.Tapprogge.
Programmable logic devices / tools Programmable logic devices are digital logic devices, providing combinatorial logic (gates, look-up tables) and flip-flops.
High-speed optical links and processors for the ATLAS Level-1 Calorimeter Trigger upgrade B.Bauss, V.Büscher, R.Degele, A.Ebling, W.Ji, C.Meyer, S.Moritz,
ATLAS L1 Calorimeter Trigger Upgrade - Uli Schäfer, MZ -
GOLD Status and Phase-1 Plans Andi E. & Uli S. Uli Schäfer 1.
Phase-0 topological processor Uli Schäfer Johannes Gutenberg-Universität Mainz Uli Schäfer 1.
Level-1 Topology Processor for Phase 0/1 - Hardware Studies and Plans - Uli Schäfer Johannes Gutenberg-Universität Mainz Uli Schäfer 1.
Phase-1 with new JEP Uli Schäfer Johannes Gutenberg-Universität Mainz Uli Schäfer 1.
JEM upgrades and optical data transmission to FEX for Phase 1 Andi E. & Uli S. Uli Schäfer 1.
Uli Schäfer 1 S-L1Calo upstream links architecture -- interfaces -- technology.
Uli Schäfer 1 (Not just) Backplane transmission options Upgrade will always be in 5 years time.
Phase-1 with new JEP Uli Schäfer Johannes Gutenberg-Universität Mainz Uli Schäfer 1.
Uli Schäfer 1 (Not just) Backplane transmission options.
S. Silverstein For ATLAS TDAQ Level-1 Trigger updates for Phase 1.
Samuel Silverstein Stockholm University L1Calo upgrade hardware planning + Overview of current concept + Recent work, results.
Uli Schäfer 1 JEM: Status and plans Pre-Production modules Status Plans.
Uli Schäfer 1 (Not just) Backplane transmission options Uli, Sam, Yuri.
Uli Schäfer 1 CP/JEP backplane test module What’s the maximum data rate into the S-CMM for phase-1 upgrade ?
Hardware status GOLD Generic Opto Link Demonstrator Uli Schäfer 1.
S. Silverstein For ATLAS TDAQ Level-1 Trigger upgrade for Phase 1.
Uli Schäfer 1 (Not just) Backplane transmission options.
Samuel Silverstein Stockholm University L1Calo upgrade discussion Overview Issues  Latency  Rates  Schedule Proposed upgrade strategy R&D.
Uli Schäfer 1 FPGAs for high performance – high density applications Intro Requirements of future trigger systems Features of recent FPGA families 9U *
JFEX Uli Schäfer 1 Mainz. Jet processing Phase-0 jet system consisting of Pre-Processor Analogue signal conditioning Digitization Digital signal processing.
FEX Uli Schäfer, Mainz 1 L1Calo For more eFEX details see indico.cern.ch/getFile.py/access?contribId=73&sessionId=51&resId=0&materialId=slides&confId=
Uli Intro / overview / issues
Preliminary Design Review: Hub Implementation Dan Edmunds, Wade Fisher, Yuri Ermoline, Philippe Laurens Michigan State University 01-Oct-2014.
JFEX Uli Schäfer 1 Mainz Logos ? jFEX (inc. specific software/firmware & Tilecal input signal, options) 30'
Topology System Uli Schäfer 1 B.Bauß, V.Büscher, W.Ji, U.Schäfer, A.Reiß, E.Simioni, S.Tapprogge, V.Wenzel.
L1Topo Status & Plans Uli Schäfer 1 B.Bauß, V.Büscher, W.Ji, S.Krause, S.Moritz, U.Schäfer, A.Reiß, E.Simioni, S.Tapprogge, V.Wenzel.
Hardware status GOLD Generic Opto Link Demonstrator Assess the use of optical backplane connectivity for use on L1Calo Uli Schäfer 1.
1 1 Rapid recent developments in Phase I L1Calo Weakly 25 Jul 2011 Norman Gee.
Evaluation of the Optical Link Card for the Phase II Upgrade of TileCal Detector F. Carrió 1, V. Castillo 2, A. Ferrer 2, V. González 1, E. Higón 2, C.
L1Topo-phase0 Uli Schäfer 1. Topo GOLD successfully used to explore technologies and initially verify 6.4Gb/s link integrity over moderate length electrical.
Status and planning of the CMX Wojtek Fedorko for the MSU group TDAQ Week, CERN April , 2012.
S. Rave, U. Schäfer For L1Calo Mainz
Ideas about Tests and Sequencing C.N.P.Gee Rutherford Appleton Laboratory 3rd March 2001.
Uli Schäfer 1 From L1Calo to S-L1Calo algorithms – architecture - technologies.
ATLAS Trigger / current L1Calo Uli Schäfer 1 Jet/Energy module calo µ CTP L1.
SL1Calo Input Signal-Handling Requirements Joint Calorimeter – L1 Trigger Workshop November 2008 Norman Gee.
JFEX Uli Schäfer 1. Constraints & Numerology Assumption: one crate, several modules. Each module covers full phi, limited eta range Data sharing with.
JFEX Uli Schäfer 1 Mainz. L1Calo Phase-1 System Uli Schäfer 2 CPM JEM CMX Hub L1Topo ROD JMM PPR From Digital Processing System CPM JEM CMX Hub L1Topo.
Hardware status GOLD Generic Opto Link Demonstrator Uli Schäfer 1.
JFEX Uli Schäfer 1 Mainz. L1Calo Phase-1 System Uli Schäfer 2 CPM JEM CMX Hub L1Topo ROD JMM PPR From Digital Processing System CPM JEM CMX Hub L1Topo.
L1Topo post review Uli Schäfer 1 Observations, options, effort, plans Uli.
August 24, 2011IDAP Kick-off meeting - TileCal ATLAS TileCal Upgrade LHC and ATLAS current status LHC designed for cm -2 s 7+7 TeV Limited to.
Samuel Silverstein, SYSF ATLAS calorimeter trigger upgrade work Overview Upgrade to PreProcessor MCM Topological trigger.
CMX: Update on status and planning Yuri Ermoline, Wojciech Dan Edmunds, Philippe Laurens, Chip Michigan State University 7-Mar-2012.
L1Topo Hardware Status & Plans Uli Schäfer 1 B.Bauß, V.Büscher, U.Schäfer, E.Simioni, S.Tapprogge, A. Vogel.
Latency / Tilecal o/e converters VME extender Uli Schäfer 1.
Uli Schäfer 1 Mainz R&D activities. Uli Schäfer 2 MZ R&D BLT has been built and tested (backplane transmission only). A few minor issues were found. Possible.
L1Calo Upgrade Phase 2 ● Phase 2 Functional Blocks? – Thoughts on L1 “refinement” of L0 ● Simulation framework ● Phase 1 Online SW Murrough Landon 2 February.
Phase2 Level-0 Calo Trigger ● Phase 2 Overview: L0 and L1 ● L0Calo Functionality ● Interfaces to calo RODs ● Interfaces to L0Topo Murrough Landon 27 June.
Phase 2 L1Calo/Calo Interface ● Introduction ● Calo RODs ● Granularity and algorithms ● Calo-L1Calo links ● L1Calo design? ● Summary Murrough Landon 9.
ATLAS calorimeter and topological trigger upgrades for Phase 1
L1Calo Upgrade Phase 2 Introduction and timescales
L1Calo Requirements on the DPS
Weiming Qian On behalf of the ATLAS Collaboration
L1Calo Phase-1 architechure
L1Calo upgrade discussion
ATLAS L1Calo Phase2 Upgrade
Run-2  Phase-1  Phase-2 Uli / Mainz
(Not just) Backplane transmission options
TTC setup at MSU 6U VME-64 TTC Crate: TTC clock signal is
Presentation transcript:

jFEX baseline Uli Schäfer 1 Uli

Intro: L1Calo Phase-1 System / Jets Uli Schäfer 2 CPM JEM CMX Hub L1Topo ROD JMM PPR From Digital Processing System CPM JEM CMX Hub L1Topo ROD JMM PPR jFEX CPM JEM CMX Hub eFEX Hub Opt. Plant L1Topo ROD JMM New at Phase 1 RTM Jets Phase-0 Jet elements 0.2 x 0.2 (η×φ) (pre-processor) Sliding window processor for jet finding JEP / JEM Jet multiplicity determination Jet feature extraction into L1Topo (pre-phase1) Phase-1: jet feature extractor jFEX Improve on jet finding (and MET measurement) Finer granularity

jFEX input data Fibre optical inputs only Fibre bundles via patch panel / fibre re-bundling stage Granularity.1×.1 (η×φ) One electromagnetic, one hadronic tower per η×φ bin Baseline 6.4 Gb/s line rate, 8b/10b encoding,  128 bit per BC 16bit energy per tower, 8 towers per fibre LAr data from DPS Tile … options… Uli Schäfer 3

Sliding Window Algorithms Jet elements (towers) ROIs environment Increase dynamic range Improve granularity by factor of four, to 0.1×0.1 (η×φ) Slightly increase environment (0.9 × 0.9 baseline) Allow for flexibility in jet definition (non-square jet shape, Gaussian filter, …) Fat jets to be calculated from high granularity small jets Optionally increase jet environment Uli Schäfer 4

Data replication Sliding window algorithm requiring large scale replication of data Forward duplication only (fan-out), no re-transmission Baseline: no replication of any source into more than two sinks Eta-strip organisation Fan-out in phi handled at source only (DPS) Transmit “core” and “environment” data Duplication at the parallel end (on-FPGA), using additional Multi-Gigabit Transceivers Allowing for differently composed streams Minimizing latency Fan-out in eta handled at destination only Baseline “far end PMA loopback” Looking into details and alternatives N.B. module orientation in phi vs. eta strip tbd. Above scheme is baseline ! Uli Schäfer 5 η ϕ

Module partitioning Uli Schäfer 6 Give up on phi ring scheme Baseline : Go for strips along eta !

jFEX module partitioning baseline Algorithm requiring environment of 0.9×0.9 around each tower to be processed  +/- 4 neighbours in eta and phi Processor modules Process strips along eta Receive fully duplicated data in phi from DPS 8 modules covering half of eta, phi quadrant each Most cells duplicated in a regular way at both source and sink “Irregular” duplication at η=0 (Current) detector cabling has lower latency around η=0 due to cable path Benefit from this latency reserve and use for additional optical fan-out (re-transmission) Uli Schäfer 7 η ϕ η=0

jFEX baseline partitioning Processor modules Half eta × phi quadrant per module Total of ~32 × 16 bins × 2 × 2 (upstream duplication, e/h) ~256 incoming 6.4Gb/s baseline 22 × 12-way opto modules “MicroPOD” high density receivers Four 72-way fibre connectors (“MPO/MTP”) Note: further connectivity required for duplication at η=0: either front (re-transmission) or back (separate active optical fanout station) Processor FPGAs Core of up to 1.2×0.8 (η× ϕ ), plus environment 0.8× × 16 bins  80 high speed links 6 large FPGAs per module Uli Schäfer 8

Baseline and options Phi quadrant baseline driven by need for a rock solid design: Line rate limited to 6.4 Gb/s only Avoid extremely dense module Sufficient η × ϕ coverage at module level to allow for increase of environment » baseline of 0.9 × 0.9 Orientation along eta might better match Tilecal in phase 2 Backup In case of problems with η=0 - duplication go for full eta, phi octant scheme Options Continue work on higher link speed Continue work on duplication schemes Consider slightly larger/more FPGAs  Increase environment beyond 0.9 × 0.9 Uli Schäfer 9

How to fit on a module ? AdvancedTC A format 6 processors XC7VX690T 4 microPOD sockets each μ Opto connectors in Zone 3 Fibre bundles from rear F fan-out via “far end PMA loopback” P Output to front panel Small amount of module control logic / non-realtime Maximise module payload: small-footprint ATCA power brick, tiny IPMC mini-DIMM Uli Schäfer 10 rear front P in out μ 7V F Z3

jFEX system (baseline) Need to handle both fine granularity and large jet environment (minimum 0.9×0.9) Require high density / high bandwidth to keep input replication factor at acceptable level (~3/4 of all FPGA inputs are duplicates) Fit in 8 modules Single ATCA shelf Sharing infrastructure with eFEX Handling / splitting of fibre bundles Some communalities in ROD design Hub design RTM Uli Schäfer 11 Hub L1Topo ROD Optical inputs Hub L1Topo ROD jFEX Hub eFEX Hub Opt. Plant L1Topo ROD RTM

Some remarks on baseline FPGA density reduced wrt previously presented phi ring scheme Still very dense design FPGA count might grow again for larger jet option Real-time circuitry has absolute precedence over non- real-time components RODs tiny mezzanines or even external modules Any TTC solution must be minimum footprint Power and ATCA control minimized in floor-plan shown Baseline design would probably allow for low-latency direct output into L1Topo (48 fibres total) Output consolidation possible at some latency penalty Uli Schäfer 12

Conclusion 8-module, single crate jFEX possible with today’s technology Use of MicroPODs challenging (thermal and mechanical) – o/e engine is the same as in popular MiniPODs Eta strip (phi quad) scheme allows for fine granularity and large environment 6.4Gb/s Relies on lower latency of incoming data near η=0 With 100% duplication of input data at source there is enough environment data available on-module for larger environment Higher transmission rates DPS needs to handle the required 100% duplication in phi Details of fibre organization and content to be defined. Started work on detailed specifications, in parallel exploring higher data rates… Uli Schäfer 13