Evaluation of a phylogenetic footprinting method designed to discover regulatory elements in prokaryotes Rekin’s Janky EMBRACE RSMD Workshop November,

Slides:



Advertisements
Similar presentations
Lecture 8 Transcription Initiation Prokaryotic Eukaryotic Reading: Chapter 4 ( ) Chapter 11 Molecular Biology syllabus web siteweb site.
Advertisements

Université Libre de Bruxelles, Belgique Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe)
Periodic clusters. Non periodic clusters That was only the beginning…
Annotation standards in ORegAnno (Draft) Obi Griffith The RegCreative Jamboree Nov 29, 2006 Ghent, Belgium.
PREDetector : Prokaryotic Regulatory Element Detector Samuel Hiard 1, Sébastien Rigali 2, Séverine Colson 2, Raphaël Marée 1 and Louis Wehenkel 1 1 Bioinformatics.
Computational detection of cis-regulatory modules Stein Aerts, Peter Van Loo, Ger Thijs, Yves Moreau and Bart De Moor Katholieke Universiteit Leuven, Belgium.
Combined analysis of ChIP- chip data and sequence data Harbison et al. CS 466 Saurabh Sinha.
Finding regulatory modules from local alignment - Department of Computer Science & Helsinki Institute of Information Technology HIIT University of Helsinki.
Bioinformatics Motif Detection Revised 27/10/06. Overview Introduction Multiple Alignments Multiple alignment based on HMM Motif Finding –Motif representation.
STRATEGY FOR GENE REGULATION 1.INFORMATION IN NUCLEIC ACID – CIS ELEMENT CIS = NEXT TO; ACTS ONLY ON THAT MOLECULE 2.TRANS FACTOR (USUALLY A PROTEIN) BINDS.
Regulatory Motifs. Contents Biology of regulatory motifs Experimental discovery Computational discovery PSSM MEME.
Copyright © 2005 Brooks/Cole — Thomson Learning Biology, Seventh Edition Solomon Berg Martin Chapter 13 Gene Regulation.
Chapter 3 Ying Xu. Total numbers of occurrences of X in coding and noncoding regions. Relative frequency (RF)of X in coding regions = number of.
Structural bioinformatics
Computing the exact p-value for structured motif Zhang Jing (Tsinghua University and university of waterloo) Co-authors: Xi Chen, Ming Li.
Identification of a Novel cis-Regulatory Element Involved in the Heat Shock Response in Caenorhabditis elegans Using Microarray Gene Expression and Computational.
Nucleotide Level We define four statistics to describe how results are scored at the nucleotide level. If a base is part of an actual site and is predicted.
Comparative Motif Finding
MOPAC: Motif-finding by Preprocessing and Agglomerative Clustering from Microarrays Thomas R. Ioerger 1 Ganesh Rajagopalan 1 Debby Siegele 2 1 Department.
The Model To model the complex distribution of the data we used the Gaussian Mixture Model (GMM) with a countable infinite number of Gaussian components.
1 Predicting Gene Expression from Sequence Michael A. Beer and Saeed Tavazoie Cell 117, (16 April 2004)
Phylogenetic Shadowing Daniel L. Ong. March 9, 2005RUGS, UC Berkeley2 Abstract The human genome contains about 3 billion base pairs! Algorithms to analyze.
Regulatory element detection using correlation with expression (REDUCE) Literature search WANG Chao Sept 14, 2004.
Promoter Analysis using Bioinformatics, Putting the Predictions to the Test Amy Creekmore Ansci 490M November 19, 2002.
Cis-regultory module 10/24/07. TFs often work synergistically (Harbison 2004)
International Livestock Research Institute, Nairobi, Kenya. Introduction to Bioinformatics: NOV David Lynn (M.Sc., Ph.D.) Trinity College Dublin.
Functional Linkages between Proteins. Introduction Piles of Information Flakes of Knowledge AGCATCCGACTAGCATCAGCTAGCAGCAGA CTCACGATGTGACTGCATGCGTCATTATCTA.
Analyzing transcription modules in the pathogenic yeast Candida albicans Elik Chapnik Yoav Amiram Supervisor: Dr. Naama Barkai.
Gary Stormo by Andrew Bardee. History Born 1950 in South Dakota Undergraduate in Biology from Caltech PhD in Molecular Biology from University of Colorado.
* only 17% of SNPs implicated in freshwater adaptation map to coding sequences Many, many mapping studies find prevalent noncoding QTLs.
Reconstruction of Transcriptional Regulatory Networks
Comparative analysis of eukaryotic genes Mar Albà Barcelona Biomedical Research Park.
Sequence-based Similarity Module (BLAST & CDD only ) & Horizontal Gene Transfer Module (Ortholog Neighborhood & GC content only)
TGCAAACTCAAACTCTTTTGTTGTTCTTACTGTATCATTGCCCAGAATAT TCTGCCTGTCTTTAGAGGCTAATACATTGATTAGTGAATTCCAATGGGCA GAATCGTGATGCATTAAAGAGATGCTAATATTTTCACTGCTCCTCAATTT.
Statistical Analysis for Word counting in Drosophila Core Promoters Yogita Mantri April Bioinformatics Capstone presentation.
Analysis of the RNAseq Genome Annotation Assessment Project by Subhajyoti De.
PreDetector : Prokaryotic Regulatory Element Detector Samuel Hiard 1, Sébastien Rigali 2, Séverine Colson 2, Raphaël Marée 1 and Louis Wehenkel 1 1 Department.
Searching for structured motifs in the upstream regions of hsp70 genes in Tetrahymena termophila. Roberto Marangoni^, Antonietta La Terza*, Nadia Pisanti^,
Comparative genomics analysis of NtcA regulons in cyanobacteria: Regulation of nitrogen assimilation and its coupling to photosynthesis Wen-Ting Huang.
Motifs BCH364C/391L Systems Biology / Bioinformatics – Spring 2015 Edward Marcotte, Univ of Texas at Austin Edward Marcotte/Univ. of Texas/BCH364C-391L/Spring.
Fundamentals of Biochemistry Third Edition Fundamentals of Biochemistry Third Edition Chapter 8 Carbohydrates Chapter 8 Carbohydrates Copyright © 2008.
Computational Genomics and Proteomics Lecture 8 Motif Discovery C E N T R F O R I N T E G R A T I V E B I O I N F O R M A T I C S V U E.
MotifClick: cis-regulatory k - length motifs finding in cliques of 2(k-1)- mers Shaoqiang Zhang April 3, 2013.
LARVA: An integrative framework for Large-scale Analysis of Recurrent Variants in noncoding Annotations M Gerstein, Yale Slides freely downloadable from.
Structure and evolution of prokaryotic transcriptional regulatory networks Group Leader MRC Laboratory of Molecular Biology Cambridge M. Madan Babu.
Interpolated Markov Models for Gene Finding BMI/CS 776 Mark Craven February 2002.
Motif Detection in Yeast Vishakh Joe Bertolami Nick Urrea Jeff Weiss.
Data Mining the Yeast Genome Expression and Sequence Data Alvis Brazma European Bioinformatics Institute.
EJ Kochis.  Regulatory sequences found in intergenic regions of DNA  There are different types!  Repressor  Promoter  DNAa Sites.
Analysis and comparison of very large metagenomes with fast clustering and functional annotation Weizhong Li, BMC Bioinformatics 2009 Present by Chuan-Yih.
Recombination breakpoints Family Inheritance Me vs. my brother My dad (my Y)Mom’s dad (uncle’s Y) Human ancestry Disease risk Genomics: Regions  mechanisms.
Cis-regulatory Modules and Module Discovery
Pattern Discovery and Recognition for Genetic Regulation Tim Bailey UQ Maths and IMB.
Genes and Genomes. Genome On Line Database (GOLD) 243 Published complete genomes 536 Prokaryotic ongoing genomes 434 Eukaryotic ongoing genomes December.
JIGSAW: a better way to combine predictions J.E. Allen, W.H. Majoros, M. Pertea, and S.L. Salzberg. JIGSAW, GeneZilla, and GlimmerHMM: puzzling out the.
Copyright OpenHelix. No use or reproduction without express written consent1.
Figure S1 Figure S1. Phylogenetic tree of LexA binding sites in cyanobacteria, B.subtilis,  - proteobacteria and E.coli. Binding sites of cyanobacteria.
Finding genes in the genome
Pattern Discovery and Recognition for Understanding Genetic Regulation Timothy L. Bailey Institute for Molecular Bioscience University of Queensland.
Ribonucleotide reductases (RNRs) catalyse the reduction of ribonucleotides to their corresponding 2`-deoxyribonucleotides and therefore play an essential.
C u e r n a v a c a C u e r n a v a c a RegulonDB: Curation, Literature Search, Notation and Evidences about Transcriptional Regulation and Transcription.
MEGAN analysis of metagenomic data Daniel H. Huson, Alexander F. Auch, Ji Qi, et al. Genome Res
` Comparison of Gene Ontology Term Annotations Between E.coli K12 Databases REDDYSAILAJA MARPURI WESTERN KENTUCKY UNIVERSITY.
bacteria and eukaryotes
Discovery of Prokaryotic Relationships through Latent Structure
Cis-regulatory evolution of duplicate genes in yeasts
CSCI2950-C Lecture 13 Network Motifs; Network Integration
Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655  Sang Woo Seo,
Nora Pierstorff Dept. of Genetics University of Cologne
Volume 7, Issue 6, Pages (June 2014)
Presentation transcript:

Evaluation of a phylogenetic footprinting method designed to discover regulatory elements in prokaryotes Rekin’s Janky EMBRACE RSMD Workshop November, 10th 2006 Service de Conformation des Macromolécules Biologiques et de Bioinformatique (S.C.M.B.B.) Université Libre de Bruxelles (U.L.B.), Belgium

Objectives Can we predict Transcription Factor binding sites from genome sequences ? Can we analyse their evolution across the taxonomy ? Can we predict Transcription Factor binding sites from genome sequences ? Can we analyse their evolution across the taxonomy ?

Transcriptional regulation Robison K, McGuire AM, and Church GM (JMB,1998) small_N1qaa.gif

Proteobacteria Actinobacteria Firmicutes Alpha Beta Gamma-proteobacteria Delta Enterobacteriales Cyano + Escherichia Bacterial taxonomic tree Bacteria

To apply dyad-analysis* at each level of the fully sequenced prokaryotes taxonomic tree. Taxonomic tree Bacteria Prokaryotes Archae Proteobacteria Firmicutes Alpha Beta Gamma Actinobacteria Cyanobacteria *J.van Helden et al (Discovering regulatory elements in non-coding sequences by analysis of spaced dyads.NAR, 2000) Strategy

LexA study case dyad-analysis for orthologous sequences of lexA within Gamma-Proteobacteria

Feature-map for orthologous sequences of lexA within Gamma Proteobacteria LexA study case

Pattern-assembly for orthologous sequences of lexA within Gamma

Bacteria Proteobacteria Firmicutes Alpha Beta Gamma Xanthomonadales Pseudomonadales Vibrionales Alteromonadales Enterobacteriales Pasteurellales Shigella Escherichia Yersinia 5.89 Cyanobacteria Actinobacteria Score = occurrence significance CTGTNNNNNNNNACAG lexA (Gamma annotated)* CTGNNNNNNNNNNCAG lexA (most significant dyad) * G.C.Walker (Mutagenesis and inducible response to DNA damage in E.coli, Microbiol Rev, 1984) LexA study case A Gamma-proteobacterial motif for lexA

Significance map Max.Sig>=8

LexA binding motif annotated in different taxonomical groups LexA study case

Significance map Gamma motif Beta motif Xanthomonadales motif Alpha motif Actinobacteria motif Firmicutes motif AATCGAACACATGTTCGAACAT ACTGTATATATATACAGTT TTGCGGAACACATANAGAACAGA GTTAGTAATACTACTAAC CACTGTATATATATACAGTG TACGAACATATGTTCGTAT Max.Sig>=8

This approach allows to identify : –the optimal taxonomic level for a given motif –multiple motifs –the evolution of a motif across the taxonomy LexA study-case may not be representative of the performance of this approach on all bacterial genes ! Summary from LexA study-case

Validation RegulonDB 368 E.coli genes 1012 sites Salgado H et al. RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acid Research 2004

e Evaluation with RegulonDB Significance of the discovered patterns

Comparing predicted patterns vs annotated sites Correctness of predicted patterns (LexA study case / Gammaproteobacteria)

Matching statistics Positive Predictive Value (PPV) fraction of discovered patterns matching at least one annotated site. PPV=MD/(MD+ND) Sensitivity (Sn) fraction of annotated binding sites matched by at least one discovered pattern. Sn=MS/(NS+MS) Geometric Accuracy (Acc.g) geometric average of the sensitivity and PPV. Acc.g= Sn. PPV Correctness of predicted patterns Annotated sites Not annotated Predicted dyads Matching dyads (MD) Matched sites (MS) Non-matching dyads (ND) Not predictedNon-matched sites (NS)True negative (TN) ?

Validation Heat-map (color scale) Evaluation by gene and by taxon (RegulonDB)

Evaluation by gene and by taxon (RegulonDB) - 1 Bac. Pro. Gam. Ent. Esc. Ref.

Evaluation by gene and by taxon (RegulonDB) - 2 Bac. Pro. Gam. Ent. Esc. Ref.

Evaluation by gene and by taxon (RegulonDB) - 3 Bac. Pro. Gam. Ent. Esc. Ref.

SnPPVAcc.g Sensitivity (Sn), PPV and Geometric Accuracy (Acc.g) Evaluation by taxon (RegulonDB) Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Escherichia

Conclusions We have evaluated a new phylogenetic footprinting approach :  Significance score is a reliable criterion to distinguish biologically relevant motifs from spurious motifs  Evaluated on prokaryotic motifs (RegulonDB) at level of genes and taxons  Optimal taxonomic levels are intermediate (Gammaproteobacteria) Limits of the approach :  Missing sites localized in coding sequences  Missing sites localized in redundant fragment (purge) Perspectives :  Purge calibration, Conservation of genes  Phylogenetic tree  Regulons prediction

Publications Discovery of conserved motifs in promoters of orthologous genes in prokaryotes. Janky R & van Helden J. Methods Mol Biol. in Press. Deciphering the evolution of cis-regulatory elements by taxonomy-traversing pattern discovery. Janky R & van Helden J. submitted.

Acknowledgements SCMBB Lab Jacques van Helden Sylvain Brohée Olivier Sand Jean Valery Turatsinze Karoline Faust Ariane Toussaint Raphaël Leplae Gipsi Lima Mendez Marc Lesink Benoit Dessailly Raul Mendez RSAT RegulonDB PhD Funding F.R.I.A. (FNRS)

Matching statistics Transcription Factor-wise Sensitivity (Sn.tf) fraction of transcription factors for which at least one of the binding sites has been matched by at least one of the discovered dyads in one of the target genes. Sn.tf=MF/(MF+NF) Correctness of predicted patterns Annotated sites Not annotated Predicted dyads Matching dyads (MD) Matched sites by factor (MF) Non-matching dyads (ND) Not predicted Non-matched sites by factor (NF) True negative (TN) ?

Transcription Factor-wise Sensitivity Evaluation by taxon (RegulonDB) Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Escherichia

>YP_ |Burkholderia_pseudomallei_K96243|lexA TGATGCGATGAGACGGCGCGCGCCGCCTGCCAGCCCCGTGTTGCGCTTGACCATCCGTTG TTCTCCAAATGCGTGGGTCGTTCGTTGCGGTTCGTTCGTTGCGGTGATGCGGTTTGTTCG CAATGTCGGGCCAGTCTAACGAACAGGTTTCATCATTAAAAATAATCGTTCCTCATTTTT TAATACTCAAAAGTGGTAAAGAGCCCCCGACCGACGACTATCGCGTCCGAAGCGTCGCTT CGACGCAGCCGAATCGCGGCGGAATCGCCGCGATAGCGCCGAACTTCAAGTAACGCTTGA ATTTCCCGCGATACTGTATAAAAATACAGCTCACTGTCTATCCATACAGTCATGCC >YP_ |Burkholderia_pseudomallei_1710b|lexA CCGTTGTTCTCCAAATGCGTGGGTCGTTCGTTGCGGTTCGTTCGTTGCGGTGATGCGGTT TGTTCGCAATGTCGGGCCAGTCTAACGAACAGGTTTCATCATTAAAAATAATCGTTCCTC ATTTTTTAATACTCAAAAGTGGTAAAGAGCCCCCGACCGACGACTATCGCGTCCGAAGCG TCGCTTCGACGCAGCCGAATCGCGGCGGAATCGCCGCGATAGCGCCGAACTTCAAGTAAC GC >YP_ |Burkholderia_thailandensis_E264|lexA CCGTTGTTCTCCAAATGCGTGGGTCGTTCGTTACGGTTTCTTGCGATTTGTTTGCGATGT CGGGCCAGTCTAACGAACAGGTTTCATCATTAAAAATAATCGTTCCTCATTTTTTAATAC TCAAAAGTGGTAAGGCGCGCCCGGATCTCGGCTATCGCGCCCGAAGCGCCGCTTCGACGC GGCCGGATCGCGACGGAATCGCCGCGATAGCGCGGAACCTCAAGTAACGC >YP_ |Burkholderia_pseudomallei_K96243|lexA TGATGCGATGAGACGGCGCGCGCCGCCTGCCAGCCCCGTGTTGCGCTTGACCATCCGTTG TTCTCCAAATGCGTGGGTCGTTCGTTGCGGTTCGTTCGTTGCGGTGATGCGGTTTGTTCG CAATGTCGGGCCAGTCTAACGAACAGGTTTCATCATTAAAAATAATCGTTCCTCATTTTT TAATACTCAAAAGTGGTAAAGAGCCCCCGACCGACGACTATCGCGTCCGAAGCGTCGCTT CGACGCAGCCGAATCGCGGCGGAATCGCCGCGATAGCGCCGAACTTCAAGTAACGCTTGA ATTTCCCGCGATACTGTATAAAAATACAGCTCACTGTCTATCCATACAGTCATGCC >YP_ |Burkholderia_pseudomallei_1710b|lexA nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nn >YP_ |Burkholderia_thailandensis_E264|lexA nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnACGGTTTCTTGCGATTTGTTTGCGnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnGGCGCGCCCGGATCTCGGCTATCGCGCCCGAAGCGCCGCTTCGACGC GGCCGGATCGCGACGGAATCGCCGCGATAGCGCGGAACCTCAAGTAACGC + Purge

Evaluating parameters

Evaluating parameters... Parameters Parameters of the analysis  Background model (MONAD versus TAXFREQ)  Promoter location (UPSTREAM versus LEADER)  Purge sequences stringency Parameters of the evaluation  Matching weight (PERFECT MATCH versus MISMATCH)  Annotated Sites (FLANKED versus NOT FLANKED)

Evaluation by taxon (RegulonDB) Testing parameters... Background model vs Promoter location (Sensitivity) LEADERUPSTREAM MONAD TAXFREQ Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Escherichia

Evaluation by taxon (RegulonDB) Testing parameters... Background model vs Promoter location (PPV) MONAD TAXFREQ Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Escherichia LEADERUPSTREAM

Evaluation by taxon (RegulonDB) Testing parameters... Background model vs Promoter location (Acc.g) MONAD TAXFREQ Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Escherichia LEADERUPSTREAM

Evaluation by taxon (RegulonDB) Testing parameters... Purge sequences Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Escherichia PPVAcc.gSn ml=30bp,mis=0 ml=40bp,mis=3

Evaluation by taxon (RegulonDB) Testing parameters... Matching Weight (Perfect match vs one mismatch) PERFECT MISMATCH PPVAcc.gSn Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Escherichia

Evaluation by taxon (RegulonDB) Testing parameters... Flanked vs not flanked annotated sites PPVAcc.gSn FLANKED NOT FLANKED Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Escherichia

Summary We have evaluated a new phylogenetic footprinting approach  Significance score is a reliable criterion to distinguish biologically relevant motifs from spurious motifs  Evaluated on prokaryote motifs (RegulonDB) at level of genes and taxons  Optimal taxonomic levels are intermediate (Gammaproteobacteria)  Open the way of regulon prediction Limits of the approach :  Missing sites localized in coding sequences  Missing sites localized in redundant fragment (purge)

Validation Heat-map (PPV vs Sensitivity) Evaluation by gene and by taxon (RegulonDB) Link

Evaluation by gene and by taxon (Regulon LexA) Validation Heat-map (PPV vs Sensitivity)

Voet, Donald and Voet, Judith G., Biochemistry, John Wiley & Sons, Inc., © e Edition : p.1180 Regulation of the SOS response in E.coli

Voet, Donald and Voet, Judith G., Biochemistry, John Wiley & Sons, Inc., © e Edition : p.1180 Regulation of the SOS response in E.coli

Firmicutes (Gram+) motif for LexA e CGAACRNRYGTTYC lexA (Gram+ annotated)* AACNNNNGTT lexA (most significant dyad) AACNNNNNTTC lexA (significant dyad) TCGAACATATGTTCGA lexA Bacteria CGAACATATGTTCK lexA Firmicutes GAACANNNGTTC lexA Bacillales * KW.Winterling (J Bacteriol 1998); EO.Davis (J Bacteriol 2002) CGAACRNRYGTTYC lexA (Gram+ annotated)* CGAACA lexA (significant dyad) AACNNNNGTT lexA (significant dyad) LexA study case

CGAACRNRYGTTYC lexA (Gram+ annotated)* TCGAAC lexA (most significant dyad) CGAACA lexA TCGAACATATGTTCGA lexA Bacteria TCGAACA lexA Actinobacteria Feature-map for orthologous sequences of lexA within Actinobacteria Actinobacterial (Gram+) motif for LexA e LexA study case

e Evaluation with RegulonDB Significance of the discovered patterns

Study case : LexA regulon in E.coli umuCumuD ssb sulA recXrecA uvrD uvrA dinF lexA dnaGrpsU rpoD recA Source : Ecocyc, uvrB phr

RSAT Orthologs of E.coli K12 genes Taxonomic tree scores consensus outputfeature-map dna-pattern Feature-map Taxonomy Prokaryote Genomes (NCBI) compare-scores pattern-assembly dyad-analysis Taxon-specific group of orthologs make-tree get-orthologs Fasta sequences retrieve-seq-multigenome Taxons frequencies calc-taxfreq footprint-analysis footprint-report.pl Html report Methods : analysis

RSAT Orthologs of E.coli K12 genes Taxonomic tree scores consensus Output (predicted patterns) feature-map dna-pattern Feature-map Taxonomy Prokaryote Genomes (NCBI) compare-scores pattern-assembly dyad-analysis Taxon-specific group of orthologs make-tree get-orthologs Fasta sequences retrieve-seq-multigenome Taxons frequencies calc-taxfreq footprint-analysis footprint-report.pl Html report Methods : Analysis and Evaluation RegulonDB

Orthologs of E.coli K12 genes Taxonomic tree Matching with annotated regulatory motifs Predicted patterns compare-patterns dyad-analysis Taxon-specific group of orthologs RegulonDB footprint-valid.pl Annotated sites Methods : evaluation Accuracy.R MySQL RegulonDB_validation.mk Evaluation stats by gene and by taxon Evaluation stats by taxon and by sig threshold heatmap4valid.R Validmap2html.pl Validation heatmap (.html) Graphs param=f(sig.threshold)

Sensitivity Evaluation by taxon (RegulonDB) Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Escherichia

Positive Predictive Value Evaluation by taxon (RegulonDB) Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Escherichia

Geometric Accuracy Evaluation by taxon (RegulonDB) Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Escherichia