Atmospheric Forces Nick Bassill April 8 th 2009. Why Are Forces Important? When we speak of “forces,” we’re really describing why the air in the atmosphere.

Slides:



Advertisements
Similar presentations
Chapter 8 Air pressure and winds.
Advertisements

Chapter 8 (part II). Forces that Influence Winds Pressure Gradient Force: difference in pressure over distance Directed perpendicular to isobars from.
Atmospheric Forces Wind Relationships.
Unit 3-4: Air Pressure.
Imbalance and Vertical Motion
Factors Affecting Wind
Chapter 6: Air Pressure and Winds
Class #5: Air pressure and winds Chapter 8 1Class #5 Tuesday, July 13, 2010.
Chapter 4. Atmospheric Pressure and Wind
Air Pressure and Winds III
San Jose State University
Recitation Geostrophic Balance Thermal Wind Effect of Friction.
Air Pressure and Wind Pressure: the amount of force exerted per unit of surface area Pressure can be increased in 2 ways 1.By increasing density or decreasing.
Atmospheric Motion ENVI 1400: Lecture 3.
Isobaric Surfaces METR DEC2009 Radiosondes are the main instrument for measuring the state of the atmosphere aloft. Isobaric maps (upper air maps)
Natural Environments: The Atmosphere
Mid-semester Journal Check Turn in journal for mid-semester check: – Last Thursday (Oct. 29): Last names starting with A-G – This Thursday (Nov. 5): Last.
Air movement ENVS what makes air move ? air moves from areas of high atmospheric pressure to areas of low atmospheric pressure low pressure.
Chapter 10: Atmospheric Dynamics
What Makes the Wind Blow? ATS 351 Lecture 8 October 26, 2009.
AOS 100: Weather and Climate Instructor: Nick Bassill Class TA: Courtney Obergfell.
AOS 100: Weather and Climate Instructor: Nick Bassill Class TA: Courtney Obergfell.
Outline for Lecture 13 Factors Affecting Wind
Connections METR DEC2009 Last class we presented the horizontal Pressure Gradient Force, which is the driver for all winds. We only touched on.
Air Pressure and Winds Dr. R. B. Schultz. Air Pressure Air pressure is the pressure exerted by the weight of air above. Average air pressure at sea level.
AOS101 Lecture 10. A severe thunderstorm is defined as a thunderstorm that produces - Hail of 1 inch diameter (in central US) or larger and/or wind gusts.
Warning! In this unit, we switch from thinking in 1-D to 3-D on a rotating sphere Intuition from daily life doesn’t work nearly as well for this material!
Understanding Air Pressure
Atmospheric Force Balances
Geostrophic Balance The “Geostrophic wind” is flow in a straight line in which the pressure gradient force balances the Coriolis force. Lower Pressure.
General Circulation & Thermal Wind
Force Balance (Chap. 6) ATM100. Topics of the Day ◦ Review Test 1 ◦ Newton’s Laws of Motion ◦ Review of vectors and forces ◦ Forces that act to move the.
Unit 2: Surface Processes and the Hydrosphere Lesson 2: Wind and the Coriolis effect ( Heath Earth Science – Pg )
WIND Factors Affecting Wind  Wind is the result of horizontal differences in air pressure. Air flows from areas of higher pressure to areas of lower pressure.
Atmospheric Motions & Climate
What set the atmosphere in motion?. Review of last lecture Thickness of the atmosphere: less than 2% of Earth’s thickness Thickness of the atmosphere:
Imbalance and Vertical Motion
Chapter 6 Atmospheric Forces and Wind
Chapter 7 cover. Figure 7.1 Figure 7.2 Figure mb/km 115G150 knots.
Thickness and Thermal Wind /aos101/wk12.html /aos101/wk12.html.
Warm Up 3/20/08 1) What source of energy fuels the wind? 2) Which of the following statements about air pressure is NOT true? a. Air pressure is exerted.
Air Pressure and Winds. Atmospheric Pressure  What causes air pressure to change in the horizontal?  Why does the air pressure change at the surface?
What set the atmosphere in motion?
Chapter 6: Air Pressure and Winds Atmospheric pressure Atmospheric pressure Measuring air pressure Measuring air pressure Surface and upper-air charts.
NATS 101 Section 13: Lecture 15 Why does the wind blow? Part I.
Atmospheric Motion SOEE1400: Lecture 7. Plan of lecture 1.Forces on the air 2.Pressure gradient force 3.Coriolis force 4.Geostrophic wind 5.Effects of.
Wind Wind is the general horizontal motion of air from one location to another based on differences in air pressure Wind is the general horizontal motion.
AOS 100: Weather and Climate Instructor: Nick Bassill Class TA: Courtney Obergfell.
AOS 100: Weather and Climate Instructor: Nick Bassill Class TA: Courtney Obergfell.
The Wind: PGF Pressure gradient force is what sets air in motion
CHAPTER 6 AIR PRESSURE AND WINDS. Understanding Air Pressure - Air pressure is a very abstract term. We cannot actually see it or touch it. --- It is.
Lecture 7 Forces (gravity, pressure gradient force)
A stable atmosphere. An absolutely stable atmosphere exists when a rising air parcel is colder and heavier (i.e., more dense) than the air surrounding.
Isobars and wind barbs sea level pressure. factors affecting wind wind is the result of horizontal differences in pressure air flows from higher to lower.
Air Pressure and Winds II. RECAP Ideal gas law: how the pressure, the temperature and the density of an ideal gas relay to each other. Pressure and pressure.
Class #11 Monday, February 2 Class #11: Monday, February 2 Chapter 6 Forces and winds 1.
AIR PRESSURE & WIND. #1 Air pressure is the weight of the atmosphere as it pushes down on the Earth’s surface. Normal,standard air pressure comes out.
Lecture on Atmospheric Pressure
Dynamics I: Basic forces
AOS 100: Weather and Climate
Winds and Forces Atmospheric Sciences 101.
Understanding Wind.
19.1 Understanding Air Pressure & Wind
Meteorology 5.07 Wind References:
Atmospheric Forces Wind Relationships.
FIGURE 6.14 Except at the equator, a free-moving object heading either east or west (or any other direction) will appear from the earth to deviate from.
Atmospheric Pressure Force exerted by the weight of the air above
Fundamental Force Balances
Isobars and wind barbs sea level pressure.
Pressure Pressure Gradient Force Coriolis Force
Presentation transcript:

Atmospheric Forces Nick Bassill April 8 th 2009

Why Are Forces Important? When we speak of “forces,” we’re really describing why the air in the atmosphere moves the way it does This describes both how the air moves horizontally (which direction it moves), and why the air moves vertically For example, precipitation occurs because something forces air upward until it condenses

Horizontal Movement When a studying the horizontal movement of air, three primary forces are often discussed: -The Pressure-gradient force -The Coriolis force -The Frictional force

The Pressure-Gradient Force (PGF) Most simply, the word “gradient” just means a “change” in the quantity being observed (in this case, pressure) When the gradient is large, that means that the quantity changes a lot over a small distance Therefore, if we say that there is a “strong pressure gradient” we are saying that pressure changes quickly over a small distance

Strong Pressure Gradient Weak Pressure Gradient

The PGF Continued Remember that pressure effectively measures how much air (or the force of that air) is above you So a pressure difference in the horizontal means that the force of the air above the two locations is different This is not a balanced state Therefore, the atmosphere will attempt to correct for this state by allowing air to flow from high pressure to low pressure A larger pressure gradient will result in a stronger wind

From:

The Coriolis Force The Coriolis force is a “fake” force which is a result of the fact that the Earth rotates The Coriolis force causes moving objects to turn to their right in the northern hemisphere and to the left in the southern hemisphere However, if an object is at rest, the Coriolis force does not apply (The Coriolis force is due to the fact that even though the angular velocity of the Earth is the same at all points, the tangential velocity is not. The Coriolis force can be thought as preserving an objects tangential velocity)

- When the PGF and Coriolis force are balanced, the atmosphere is said to be in “geostrophic balance” - The resultant wind is called the “geostrophic wind”

The Geostrophic Wind The geostrophic wind always blows parallel to the isobars (lines of constant pressure) A stronger PGF (when the isobars are closer) results in a stronger geostrophic wind

What direction would you expect the geostrophic wind to blow in?

Almost … but why the difference?

The Friction Force Close to the surface, geostrophic balance is not a very good approximation This is because friction is quite strong near the Earth’s surface The Earth’s surface is very rough (buildings, trees, mountains, etc.), which induces friction Therefore, as you get farther away from the Earth’s surface, the friction force decreases This means that geostrophic balance becomes more realistic as you move away from the Earth’s surface Friction always acts to oppose the wind (with a strength proportional to the strength of the wind)

Friction Continued However, if friction acts to slow the wind, then the Coriolis Force will weaken At the same time, the PGF remains the same strength Therefore, geostrophic balance is no longer in effect This causes the wind to blow slightly across isobars, towards low pressure

The New Force Balance From: rgetics/Spiral_Winds/Spiral_Winds.html

Constant Pressure vs. Constant Height Maps So far we’ve looked at Sea Level Pressure maps (so pressure varies while the height is constant everywhere - 0 meters) However, meteorologists often look at constant pressure maps (so the height changes, rather than the pressure) As we’ll learn more about later, you can think of “high” heights as being analogous to high pressures, and “low” heights as being analogous to low pressures Similarly, the geostrophic wind will blow parallel to lines of constant height, with lower heights to the left of the direction of the wind

Heights and winds at 200 mb Notice how much closer the winds are to geostrophic balance at this level, compared with the surface