Fig. 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2 + H 2 O Cellular respiration in mitochondria Organic molecules + O 2 ATP powers most.

Slides:



Advertisements
Similar presentations
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Advertisements

Ch 9 Cellular Respiration Extracting usable energy from organic molecules.
Figure 7.UN01 becomes oxidized (loses electron) becomes reduced (gains electron)
FIGHTING ENTROPY II: RESPIRATION
Essential Knowledge 2.A.2: Organisms capture and store free energy for use in biological processes.
Cellular Respiration Dr. Vonnahme. Fig. 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2 + H 2 O Cellular respiration in mitochondria Organic.
Krebs cycle. Krebs Cycle (Citric acid cycle) Series of 8 sequential reactions Matrix of the mitorchondria Synthesis of 2 ATP Generation of 8 energetic.
CELLULAR RESPIRATION Chapter 1 Electron transport chain and chemiosmosis Mitochondrion Citric acid cycle Preparatory reaction 232 ADP or or 34 2.
 Organisms must take in energy from outside sources.  Energy is incorporated into organic molecules such as glucose in the process of photosynthesis.
How do Organisms Supply Themselves with Energy. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Light energy ECOSYSTEM CO 2 +
Cellular Respiration Part 3
Overview: Life Is Work Living systems require energy from outside sources Different organisms have different strategies.
Chp 9: Cellular Respiration. Figure 9-01 LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules.
Ch. 9 Cellular Respiration Living cells require energy from outside sources Heterotrophs and autotrophs Photosynthesis generates O 2 and organic molecules,
Chapter 7 Oxidative Phosphorylation. You Must Know How electrons from NADH and FADH 2 are passed to a series of electron acceptors to produce ATP by chemiosmosis.
Please put your test corrections in the appropriate file on the table by the door. (Please staple your corrections to your test packet.) Also, please get.
NOTES: Chapter 9 (Part 2): Glycolysis & Krebs Cycle (9.2 & 9.3)
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Catabolic Pathways and Production of ATP C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O.
Fig. 9-1 Figure 9.1 How do these leaves power the work of life for the giant panda?
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 9.3: The citric acid cycle completes the energy-yielding oxidation of.
Chapter 9 Cellular Respiration. Fig. 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2 + H 2 O Cellular respiration in mitochondria Organic.
10/18/11 Chapter 9: Cellular Respiration. The Principle of Redox Chemical reactions that transfer electrons between reactants are called oxidation- reduction.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 9.1 Cellular respiration – Is the most prevalent and efficient catabolic.
LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP powers most.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates.
Cellular Respiration: Harvesting Chemical Energy Chapter 9.
Cellular Respiration: Harvesting Chemical Energy Chapter 7.
Cellular Respiration Obtain energy from the degradation of sugars Uses Oxygen and produces CO 2 Many steps take place in the mitochondria of cells Complementary.
CELLULAR RESPIRATION Chapter 1 Electron transport chain and chemiosmosis Mitochondrion Citric acid cycle Preparatory reaction 232 ADP or or 34 2.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint TextEdit Slides for Biology, Seventh Edition Neil Campbell and Jane.
Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2 + H 2 O Cellular respiration in mitochondria Organic molecules + O 2 ATP powers most cellular.
Fig Are you the “slow-twitch” or “fast-twitch”? Barbara Radcliffe 2:15:25 London World Championships Berlin, Germany Usain Bolt 9.58.
© 2014 Pearson Education, Inc. Figure 7.1. © 2014 Pearson Education, Inc. Figure 7.2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2  H 2.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
After pyruvate is oxidized, the citric acid cycle completes the energy-yielding oxidation of organic molecules. Chapter 9, Section 3.
Getting ATP from food with and without Oxygen. Fig. 9-1.
Chapter 9: Cellular Respiration: Harvesting Chemical Energy.
1 Cellular Respiration: Harvesting Chemical Energy.
Cell Respiration-Introduction Energy needed to keep the entropy of the cell low Importance of ATP Autotrophs and heterotrophs-similarities and differences.
Fig. 9-1 Chapter 9 Cellular Respiration: Harvesting Chemical Energy.
Oxidative Phosphorylation & Fermentation
The Cellular Respiration
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 9 Cellular Respiration: Harvesting Chemical Energy.
The Citric Acid Cycle.
Cellular Respiration Campbell Ch. 9. Life Requires Energy Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis Cells use chemical.
Connecting Cellular Respiration and Photosynthesis Living cells require energy from outside sources Some animals, such as chimpanzees, obtain energy by.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Figure LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP.
Cellular Respiration.
Aerobic Cellular Respiration
Fig. 9-1.
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration Stages 2-4.
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration Remember: In order for cells to survive, it must have energy to do work!!! ATP is the energy that’s available to do work! How does.
Cellular Respiration: Harvesting Chemical Energy
Glycolsis and Citric Acid Cycle
Cellular Respiration and Fermentation
Glycolysis occurs in the cytoplasm and has two major phases:
Cellular Respiration Video
AP Biology Ch. 9 Cellular Respiration
Fig. 9-1 Figure 9.1 How do these leaves power the work of life for the giant panda?
Energy in food is stored as carbohydrates (such as glucose), proteins & fats. Before that energy can be used by cells, it must be released and transferred.
Presentation transcript:

Fig. 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2 + H 2 O Cellular respiration in mitochondria Organic molecules + O 2 ATP powers most cellular work Heat energy ATP

Fig. 9-UN1 becomes oxidized (loses electron) becomes reduced (gains electron)

Fig. 9-5 Free energy, G (a) Uncontrolled reaction H2OH2O H / 2 O 2 Explosive release of heat and light energy (b) Cellular respiration Controlled release of energy for synthesis of ATP 2 H e – 2 H + 1 / 2 O 2 (from food via NADH) ATP 1 / 2 O 2 2 H + 2 e – Electron transport chain H2OH2O

Fig Substrate-level phosphorylation ATP Cytosol Glucose Pyruvate Glycolysis Electrons carried via NADH

Fig ATP ADP Hexokinase 1 ATP ADP Hexokinase 1 Glucose Glucose-6-phosphate Glucose Glucose-6-phosphate

Fig Hexokinase ATP ADP 1 Phosphoglucoisomerase 2 Phosphogluco- isomerase 2 Glucose Glucose-6-phosphate Fructose-6-phosphate Glucose-6-phosphate Fructose-6-phosphate

1 Fig Hexokinase ATP ADP Phosphoglucoisomerase Phosphofructokinase ATP ADP 2 3 ATP ADP Phosphofructo- kinase Fructose- 1, 6-bisphosphate Glucose Glucose-6-phosphate Fructose-6-phosphate Fructose- 1, 6-bisphosphate Fructose-6-phosphate 3

Fig Substrate-level phosphorylation ATP Cytosol Glucose Pyruvate Glycolysis Electrons carried via NADH

Fig Mitochondrion Substrate-level phosphorylation ATP Cytosol Glucose Pyruvate Glycolysis Electrons carried via NADH Substrate-level phosphorylation ATP Electrons carried via NADH and FADH 2 Citric acid cycle

Fig CYTOSOLMITOCHONDRION NAD + NADH+ H Pyruvate Transport protein CO 2 Coenzyme A Acetyl CoA

Fig Pyruvate NAD + NADH + H + Acetyl CoA CO 2 CoA Citric acid cycle FADH 2 FAD CO NAD H + ADP +P i ATP NADH

Fig Acetyl CoA CoA—SH Citrate H2OH2O Isocitrate NAD + NADH + H + CO2CO2  -Keto- glutarate CoA—SH CO2CO2 NAD + NADH + H + Succinyl CoA CoA—SH P i GTP GDP ADP ATP Succinate FAD FADH 2 Fumarate Citric acid cycle H2OH2O Malate Oxaloacetate NADH +H + NAD

Fig Mitochondrion Substrate-level phosphorylation ATP Cytosol Glucose Pyruvate Glycolysis Electrons carried via NADH Substrate-level phosphorylation ATP Electrons carried via NADH and FADH 2 Citric acid cycle

Fig Mitochondrion Substrate-level phosphorylation ATP Cytosol Glucose Pyruvate Glycolysis Electrons carried via NADH Substrate-level phosphorylation ATP Electrons carried via NADH and FADH 2 Oxidative phosphorylation ATP Citric acid cycle Oxidative phosphorylation: electron transport and chemiosmosis

Fig NADH NAD + 2 FADH 2 2 FAD Multiprotein complexes FAD FeS FMN FeS Q  Cyt b   Cyt c 1 Cyt c Cyt a Cyt a 3 IVIV Free energy (G) relative to O 2 (kcal/mol) (from NADH or FADH 2 ) 0 2 H / 2 O2O2 H2OH2O e–e– e–e– e–e–

Fig Protein complex of electron carriers H+H+ H+H+ H+H+ Cyt c Q    VV FADH 2 FAD NAD + NADH (carrying electrons from food) Electron transport chain 2 H / 2 O 2 H2OH2O ADP + P i Chemiosmosis Oxidative phosphorylation H+H+ H+H+ ATP synthase ATP 21

Fig Maximum per glucose: About 36 or 38 ATP + 2 ATP + about 32 or 34 ATP Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle 2 Acetyl CoA Glycolysis Glucose 2 Pyruvate 2 NADH 6 NADH2 FADH 2 2 NADH CYTOSOL Electron shuttles span membrane or MITOCHONDRION

Fig Mitochondrion Substrate-level phosphorylation ATP Cytosol Glucose Pyruvate Glycolysis Electrons carried via NADH Substrate-level phosphorylation ATP Electrons carried via NADH and FADH 2 Oxidative phosphorylation ATP Citric acid cycle Oxidative phosphorylation: electron transport and chemiosmosis