1 Adversarial Search CS 171/271 (Chapter 6) Some text and images in these slides were drawn from Russel & Norvig’s published material.

Slides:



Advertisements
Similar presentations
Chapter 6, Sec Adversarial Search.
Advertisements

Adversarial Search Chapter 6 Sections 1 – 4. Outline Optimal decisions α-β pruning Imperfect, real-time decisions.
Adversarial Search Chapter 6 Section 1 – 4. Types of Games.
Games & Adversarial Search Chapter 5. Games vs. search problems "Unpredictable" opponent  specifying a move for every possible opponent’s reply. Time.
February 7, 2006AI: Chapter 6: Adversarial Search1 Artificial Intelligence Chapter 6: Adversarial Search Michael Scherger Department of Computer Science.
Games & Adversarial Search
Adversarial Search Chapter 6 Section 1 – 4. Warm Up Let’s play some games!
CSC 8520 Spring Paula Matuszek CS 8520: Artificial Intelligence Solving Problems by Searching Paula Matuszek Spring, 2010 Slides based on Hwee Tou.
CS 484 – Artificial Intelligence
Adversarial Search Chapter 6 Section 1 – 4.
Adversarial Search Chapter 5.
COMP-4640: Intelligent & Interactive Systems Game Playing A game can be formally defined as a search problem with: -An initial state -a set of operators.
Adversarial Search Chapter 6. History Much of the work in this area has been motivated by playing chess, which has always been known as a "thinking person's.
Adversarial Search Game Playing Chapter 6. Outline Games Perfect Play –Minimax decisions –α-β pruning Resource Limits and Approximate Evaluation Games.
Adversarial Search CSE 473 University of Washington.
Adversarial Search Chapter 6.
Artificial Intelligence for Games Game playing Patrick Olivier
Adversarial Search 對抗搜尋. Outline  Optimal decisions  α-β pruning  Imperfect, real-time decisions.
An Introduction to Artificial Intelligence Lecture VI: Adversarial Search (Games) Ramin Halavati In which we examine problems.
1 Adversarial Search Chapter 6 Section 1 – 4 The Master vs Machine: A Video.
Games CPSC 386 Artificial Intelligence Ellen Walker Hiram College.
EIE426-AICV 1 Game Playing Filename: eie426-game-playing-0809.ppt.
G51IAI Introduction to AI Minmax and Alpha Beta Pruning Garry Kasparov and Deep Blue. © 1997, GM Gabriel Schwartzman's Chess Camera, courtesy IBM.
Game Playing CSC361 AI CSC361: Game Playing.
UNIVERSITY OF SOUTH CAROLINA Department of Computer Science and Engineering CSCE 580 Artificial Intelligence Ch.6: Adversarial Search Fall 2008 Marco Valtorta.
Adversarial Search: Game Playing Reading: Chess paper.
Games & Adversarial Search Chapter 6 Section 1 – 4.
Game Playing State-of-the-Art  Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in Used an endgame database defining.
CSC 412: AI Adversarial Search
CHAPTER 6 : ADVERSARIAL SEARCH
1 Game Playing Why do AI researchers study game playing? 1.It’s a good reasoning problem, formal and nontrivial. 2.Direct comparison with humans and other.
Computing & Information Sciences Kansas State University Wednesday, 13 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 9 of 42 Wednesday, 13 September.
Projects Analyze Existing Game project –Due next class. Re-check the guidelines on course’s website! Create your Own Project –Due: Final game due Tuesday.
Games as Game Theory Systems (Ch. 19). Game Theory It is not a theoretical approach to games Game theory is the mathematical study of decision making.
Adversarial Search Chapter 6 Section 1 – 4. Outline Optimal decisions α-β pruning Imperfect, real-time decisions.
Introduction to Artificial Intelligence CS 438 Spring 2008 Today –AIMA, Ch. 6 –Adversarial Search Thursday –AIMA, Ch. 6 –More Adversarial Search The “Luke.
Games 1 Alpha-Beta Example [-∞, +∞] Range of possible values Do DF-search until first leaf.
For Wednesday Read chapter 7, sections 1-4 Homework: –Chapter 6, exercise 1.
Adversarial Search Chapter 6 Section 1 – 4. Search in an Adversarial Environment Iterative deepening and A* useful for single-agent search problems What.
Computing & Information Sciences Kansas State University Wednesday, 12 Sep 2007CIS 530 / 730: Artificial Intelligence Lecture 9 of 42 Wednesday, 12 September.
CHAPTER 4 PROBABILITY THEORY SEARCH FOR GAMES. Representing Knowledge.
Adversarial Search Chapter Games vs. search problems "Unpredictable" opponent  specifying a move for every possible opponent reply Time limits.
CSE373: Data Structures & Algorithms Lecture 23: Intro to Artificial Intelligence and Game Theory Based on slides adapted Luke Zettlemoyer, Dan Klein,
Paula Matuszek, CSC 8520, Fall Based in part on aima.eecs.berkeley.edu/slides-ppt 1 CS 8520: Artificial Intelligence Adversarial Search Paula Matuszek.
Artificial Intelligence
ARTIFICIAL INTELLIGENCE (CS 461D) Princess Nora University Faculty of Computer & Information Systems.
Turn-Based Games Héctor Muñoz-Avila sources: Wikipedia.org Russell & Norvig AI Book; Chapter 5 (and slides)
Adversarial Search and Game Playing Russell and Norvig: Chapter 6 Slides adapted from: robotics.stanford.edu/~latombe/cs121/2004/home.htm Prof: Dekang.
Explorations in Artificial Intelligence Prof. Carla P. Gomes Module 5 Adversarial Search (Thanks Meinolf Sellman!)
Adversarial Search Chapter 5 Sections 1 – 4. AI & Expert Systems© Dr. Khalid Kaabneh, AAU Outline Optimal decisions α-β pruning Imperfect, real-time decisions.
Chapter 5: Adversarial Search & Game Playing
ADVERSARIAL SEARCH Chapter 6 Section 1 – 4. OUTLINE Optimal decisions α-β pruning Imperfect, real-time decisions.
Adversarial Search CMPT 463. When: Tuesday, April 5 3:30PM Where: RLC 105 Team based: one, two or three people per team Languages: Python, C++ and Java.
1 Chapter 6 Game Playing. 2 Chapter 6 Contents l Game Trees l Assumptions l Static evaluation functions l Searching game trees l Minimax l Bounded lookahead.
5/4/2005EE562 EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 9, 5/4/2005 University of Washington, Department of Electrical Engineering Spring 2005.
Game Playing Why do AI researchers study game playing?
Game Playing Why do AI researchers study game playing?
Adversarial Search and Game Playing (Where making good decisions requires respecting your opponent) R&N: Chap. 6.
Adversarial Search Chapter 5.
Games & Adversarial Search
Games & Adversarial Search
Adversarial Search.
Games & Adversarial Search
Games & Adversarial Search
Games & Adversarial Search
Adversarial Search CMPT 420 / CMPG 720.
Adversarial Search CS 171/271 (Chapter 6)
Games & Adversarial Search
Adversarial Search Chapter 6 Section 1 – 4.
Presentation transcript:

1 Adversarial Search CS 171/271 (Chapter 6) Some text and images in these slides were drawn from Russel & Norvig’s published material

2 Games Multi-agent environment Agent needs to consider actions of other agents Games: Adversarial Search Problems Considerations Many possible moves of other player Time (need to optimize, or approximate)

3 Game as a Search Problem Initial State Successor Function Note the turn-taking aspect (“ply”) Terminal test “Goal”: game over (leaf nodes) Utility Function Score or outcome (examples?)

4 Game Tree

5 Infallible Opponent Assumption Strategy: select the best move that assumes the your opponent will make the best play Need to consider all possible opponent moves Minimax value of a node in the game tree Leaf node: minimax value = utility value Agent (called MAX) picks a move that results in a state with maximum utility; minimax value of the node is that maximum Opponent picks the move that minimizes utility for the agent; minimax value of the node is that minimum

6 Minimax Values

7 Minimax Algorithm

8 α-β (alpha-beta) Pruning May skip examination of some nodes If a node has no impact on the min/max choice at upper levels, prune that node Need to maintain α -> highest valued choice so far along path for MAX β -> lowest valued choice so far along path for MIN

9 α-β pruning : omit examination of these nodes; Minimum of 2 cannot yield a maximum higher than 3

10 About α-β pruning Effectiveness is highly dependent on order in which successors are examined Can reduce effective tree depth to half its value

11 Other Considerations in Games Because of time constraints, may have to settle with estimate of utility (evaluation function) Non-terminal nodes turned into leaves Elements of chance e.g., dice and cards Min, max, and chance nodes

12 State of the Art Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in Used a precomputed endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 444 billion positions. Chess: Deep Blue defeated human world champion Garry Kasparov in a six-game match in Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.

13 State of the Art Othello: human champions refuse to compete against computers, who are too good. Go: human champions refuse to compete against computers, who are too bad. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves.