LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.

Slides:



Advertisements
Similar presentations
COMMUNITY ECOLOGY.
Advertisements

Community Ecology Chapter 53 Overview: What Is a Community?
Creative Community Ecology
Chapter Community Ecology: The Interactions of Different Populations I. What is a Community? - An assemblage of species living close enough together.
Chapter 53 Notes Community Ecology. What is a Community? A __________ is any assemblage of populations in an area or habitat. Communities differ dramatically.
41 Species Interactions.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
COMMUNITY ECOLOGY.
What is a Community? A community is defined as an assemblage of species living close enough together for potential interaction. Communities differ in their.
What Is a Community? A biological community is an assemblage of populations of various species living close enough for potential interaction Animals and.
Fig Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Community Ecology A biological community is an assemblage.
Chapter 53 Community Ecology. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings What Is a Biological Community? a grouping of populations.
Chapter 54: Community Ecology
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Community Ecology Chapter 54. Slide 2 of 20 Community  Def. – group of populations (different species) that live close enough to interact  Interspecific.
Community Ecology Chapter 53. Community - group of species living close enough for interaction. Species richness – # of species a community contains;
1 Community Ecology Chapter Biological Communities A community consists of all the species that occur together at any particular locality.
Chapter 54 Community Ecology.
Chapter 53 Community Ecology.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 54 Community Ecology.
54 Community Ecology Lecture Presentation by Nicole Tunbridge and
Ch 53 – Community Ecology. What is a community? A group of populations of different species living close enough to interact.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Community Ecology Chapter 54.
Types of interaction In ecosystems. Interspecific Interactions Competition Predation Herbivory (herbivores eating plants or algae) Symbiosis.
Community Ecology Chapter 54. Community An assemblage of populations of various species living close enough for potential interactions.
Community Ecology Chapter 53. Community - group of species living close enough for interaction. Species richness – # of species a community contains;
Community Ecology Chapter 54. Community  Interspecific interactions  Interactions with different species  Competition  Predation  Herbivory  Symbiosis.
Chapter 53: Community Ecology. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings When Connell removed Balanus from the lower strata,
Chapter 53 – Community Ecology What is a community? A community is a group of populations of various species living close enough for potential interaction.
© 2014 Pearson Education, Inc. Chapter 41 Overview: Communities in Motion  A biological community is populations of various species living close enough.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Overview: A Sense of Community A biological community is an assemblage.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
© 2014 Pearson Education, Inc A. ricordii A. distichus perches on fence posts and other sunny surfaces. A. insolitus usually perches on shady branches.
Ecology The study of the interactions between organisms and their environment.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 53 ~ Community Ecology
Community Ecology A biological community is an assemblage of populations of various species living close enough for potential interaction © 2011 Pearson.
Which species benefits from its interactions?
Interspecific interactions Competition (-/-) Predation (+/-) Herbivory (+/-) Symbiosis Mutualism (+/+) Commensalism (+/0) Parasitism (+/-)
AP Biology Community Ecology population ecosystem community biosphere organism.
What questions do ecologists ask about communities? Structure Dynamics Function How many species? How do they compare in abundance? Who eats who? How do.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Community Ecology Chapter 54. Community An assemblage of populations of various species living close enough for potential interactions.
Chapter 37.1 – 37.6 COMMUNITY ECOLOGY. What you need to know! The community level of organization The role of competitive exclusion in interspecific competition.
Chapter 6 – Ecological Communities. © 2013 Pearson Education, Inc. 6.1 Competition for Shared Resources Resources are limited Species within ecological.
All interactions between biotic factors that can impact an ecosystem
Chapter 54 Community Ecology
Metapopulations are groups of populations linked by immigration and emigration. High levels of immigration combined with higher survival can result in.
A. Lizard species perches on
Community interactions are classified by whether they help, harm, or have no effect on the species involved Ecologists call relationships between species.
Community Ecology Chapter 37.1 – 37.6.
Community ecology.
I can describe how biological systems interact and how species diversity is promoted within communities. Do Now: (review of ch 53) Turn and Talk: In pairs,
Overview: A Sense of Community
Community Ecology A community is a group of populations of different species living close enough to interact.
Chapter 41 Overview: Communities in Motion
Biology Chapter 27 Section 2
Community Ecology Chapters 54 PART 2.
Fig
Daily Science Water (if needed) and measure height of pea plants
Introduction What is a Community?
Chapter 54 Community Ecology.
Community interactions are classified by whether they help, harm, or have no effect on the species involved Ecologists call relationships between species.
Catalyst Why is it important that nutrients cycle?
Figure Idealized survivorship curves: types I, II, and III
Marine Community Ecology
Warm-Up Define these Terms: Fundamental niche Realized niche Symbiosis
Presentation transcript:

LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson © 2011 Pearson Education, Inc. Lectures by Erin Barley Kathleen Fitzpatrick Community Ecology Chapter 54

Overview: Communities in Motion A biological community is an assemblage of populations of various species living close enough for potential interaction  For example, the “carrier crab” carries a sea urchin on its back for protection against predators © 2011 Pearson Education, Inc.

Concept 54.1: Community interactions are classified by whether they help, harm, or have no effect on the species involved Ecologists call relationships between species in a community interspecific interactions Examples are competition, predation, herbivory, symbiosis (parasitism, mutualism, and commensalism), and facilitation Interspecific interactions can affect the survival and reproduction of each species, and the effects can be summarized as positive (+), negative (–), or no effect (0) © 2011 Pearson Education, Inc.

Competitive Exclusion Strong competition can lead to competitive exclusion, local elimination of a competing species The competitive exclusion principle states that two species competing for the same limiting resources cannot coexist in the same place © 2011 Pearson Education, Inc.

Ecological Niches and Natural Selection The total of a species’ use of biotic and abiotic resources is called the species’ ecological niche An ecological niche can also be thought of as an organism’s ecological role Ecologically similar species can coexist in a community if there are one or more significant differences in their niches © 2011 Pearson Education, Inc.

Figure 54.5 (a) Cryptic coloration(b) Aposematic coloration Canyon tree frog Poison dart frog (c) Batesian mimicry: A harmless species mimics a harmful one.(d) Müllerian mimicry: Two unpalatable species mimic each other. Hawkmoth larva Cuckoo bee Yellow jacket Green parrot snake

Parasitism In parasitism (+/– interaction), one organism, the parasite, derives nourishment from another organism, its host, which is harmed in the process Parasites that live within the body of their host are called endoparasites Parasites that live on the external surface of a host are ectoparasites © 2011 Pearson Education, Inc.

Mutualism Mutualistic symbiosis, or mutualism (+/+ interaction), is an interspecific interaction that benefits both species A mutualism can be –Obligate, where one species cannot survive without the other –Facultative, where both species can survive alone © 2011 Pearson Education, Inc.

Commensalism In commensalism (+/0 interaction), one species benefits and the other is neither harmed nor helped Commensal interactions are hard to document in nature because any close association likely affects both species © 2011 Pearson Education, Inc.

Communities with higher diversity are –More productive and more stable in their productivity –Better able to withstand and recover from environmental stresses –More resistant to invasive species, organisms that become established outside their native range © 2011 Pearson Education, Inc.

Trophic Structure Trophic structure is the feeding relationships between organisms in a community It is a key factor in community dynamics Food chains link trophic levels from producers to top carnivores © 2011 Pearson Education, Inc.

Carnivore Herbivore Carnivore Plant A terrestrial food chain Carnivore Zooplankton Phytoplankton A marine food chain Quaternary consumers Tertiary consumers Secondary consumers Primary consumers Primary producers Figure 54.13

Food Webs A food web is a branching food chain with complex trophic interactions © 2011 Pearson Education, Inc.

Figure Humans Sperm whales Smaller toothed whales Baleen whales Crab- eater seals Leopard seals Elephant seals Squids Fishes Birds Carniv- orous plankton Cope- pods Euphau- sids (krill) Phyto- plankton

Limits on Food Chain Length Each food chain in a food web is usually only a few links long Two hypotheses attempt to explain food chain length: the energetic hypothesis and the dynamic stability hypothesis © 2011 Pearson Education, Inc.

The energetic hypothesis suggests that length is limited by inefficient energy transfer –For example, a producer level consisting of 100 kg of plant material can support about 10 kg of herbivore biomass (the total mass of all individuals in a population) The dynamic stability hypothesis proposes that long food chains are less stable than short ones Most data support the energetic hypothesis © 2011 Pearson Education, Inc.

Keystone Species and Ecosystem Engineers Keystone species exert strong control on a community by their ecological roles, or niches In contrast to dominant species, they are not necessarily abundant in a community Field studies of sea stars illustrate their role as a keystone species in intertidal communities © 2011 Pearson Education, Inc.

Ecological Succession Ecological succession is the sequence of community and ecosystem changes after a disturbance Primary succession occurs where no soil exists when succession begins Secondary succession begins in an area where soil remains after a disturbance © 2011 Pearson Education, Inc.

Figure 54.UN03