Staple Pin Simulation Estimated Time for Completion: ~35min Experience Level: Lower MSC.Patran 2005 r2 MSC.Marc 2005 r2.

Slides:



Advertisements
Similar presentations
Drinking Straw Estimated Time for Completion: ~45min Experience Level: Lower MSC.Patran 2005 r2 MSC.Marc 2005 r2.
Advertisements

O-Ring Estimated Time for Completion: 30 minutes Experience Level: Lower MSC.Marc 2005r2 MSC.Patran 2005r2.
Rubber Seal Estimated Time for Completion: 30 minutes Experience Level: Lower MSC.Marc 2005r2 MSC.Patran 2005r2.
AE4131 ABAQUS Lecture Part III
Introduction to ABAQUS 27 th February, Units Before starting to define any model, you need to decide which system of units you will use. ABAQUS.
Can Bottom Snap-through
Define a Composite Material
1 Simple Pendulum Estimated time required: 20 min GUI familiarity level required: Lower MSC.ADAMS 2005 r2.
Tube Insertion Estimated Time for Completion: 8 minutes Experience Level: Higher MSC.Marc 2005r2 MSC.Patran 2005r2.
Spring Design using Parametric Modeling
WORKSHOP 8 NONLINEAR CONTACT
WORKSHOP 7 TAPERED PLATE WS7-1 NAS120, Workshop 7, November 2003.
Estimated Time for Completion: 30 minutes Experience Level: Lower Compliant Stroke Amplifier MSC.Marc 2005r2 MSC.Patran 2005r2.
1 Tutorial 5-1: Part Sketch / Geometric Constraints.
1 Pulley System GUI Familiarity Level Required: Lower Estimated Time Required: 40 minutes MSC.ADAMS 2005 r2.
WS Mar120 - Patran Day 1 Overview - Meshing FINITE ELEMENT MODEL OF A 3-D CLEVIS AND PROPERTY ASSIGNMENT.
INTERFERENCE FITS MAR Interference Fits.
CONTACT ANALYSIS USING 3D BOLTS
WORKSHOP 11 SPACECRAFT FAIRING
1 F F Double-Cantilevered Bar Estimated time for completion: ~20 min Experience Level: Lower MSC.Patran 2005 r2.
Crush Pipe Problem Estimated Time for Completion: ~35min Experience Level: Lower MSC.Patran 2005 r2 MSC.Marc 2005 r2.
1 MSC ADAMS 2005 r2 Crank Slider Mechanism on Incline Plane GUI Familiarity Level Required: Lower Estimated Time Required: 1 hour.
Modal Analysis of a Simple Cantilever
Problem 1: Structural Analysis of Signs Post University of Puerto Rico at Mayagüez Department of Mechanical Engineering Modified by (2008): Dr. Vijay K.
Hertz Contact Estimated Time for Completion: 30 minutes Experience Level: Lower MSC.Marc 2005r2 MSC.Patran 2005r2.
WORKSHOP 1 STEADY STATE HEAT TRANSFER WORKSHOP 1 STEADY STATE HEAT TRANSFER.
1 Oscillating Slider Estimated time required: 25 min GUI familiarity level required: Higher MSC.ADAMS 2005 r2.
9.0 New Features Metal Shaft with Rubber Boot Workshop 7 Load Steps in Workbench.
1 Bridge Truss Structure Estimated time required: ~30 min Experience level: Lower MSC.Patran 2005 r2.
BREAK FORMING MAR Break Forming Exercise. WS MAR 120, Break Forming, June 2004MAR Break Forming Exercise Model Description: A flat sheet.
LANDING GEAR STRUT ANALYSIS
Micro-valve Estimated Time for Completion: ~30min Experience Level: Lower MSC.Patran 2005 r2 MSC.Marc 2005 r2.
WS8C-1 WORKSHOP 8C TENSION COUPON NAS120, Workshop 8C, November 2003.
Mar120, Workshop 7, December 2001 WORKSHOP 7 METAL FORMING A PAPER CLIP WORKSHOP 7 METAL FORMING A PAPER CLIP.
WORKSHOP 4 TRANSIENT HEAT TRANSFER ANALYSIS. WS4-2.
WS Mar120 - Patran Day 1 Overview - Results POST PROCESSING OF STRESS RESULTS.
WS-1 WORKSHOP Define Equivalent Section Plate Properties NAS121, Workshop, May 6, 2002.
BALL JOINT ANALYSIS F=600 lbf MAR 120 – Ball Joint Analysis.
1 Stadium Display Truss – Troubleshooting Estimated time required: 35 min Experience level: Higher MD Patran 2005 r2.
WS6-1 WORKSHOP 6 BRIDGE TRUSS NAS120, Workshop 6, November 2003.
GEOMETRY MODEL OF A 3-D CLEVIS
ANALYSIS OF A CANTILEVER BEAM
1 Assemble Exploded Model GUI Familiarity Level Required: Lower Estimated Time Required: 30 minutes MSC.ADAMS 2005 r2.
Workshop 5-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 5 Stiffened Plate Subjected to Pressure Load.
WS8B-1 WORKSHOP 8B TENSION COUPON NAS120, Workshop 8B, November 2003.
WS4-1 WORKSHOP 4 Stadium Truss NAS120, Workshop 4, November 2003.
WS9A-1 WORKSHOP 9A 2½ D CLAMP – SWEEP MESHER NAS120, Workshop 9A, November 2003.
Dynamics with Friction Heating Estimated Time for Completion: 5 minutes Experience Level: Higher MSC.Marc 2005r2 MSC.Patran 2005r2.
Rib Forging Workshop Nine REFERENCE: Training Manual Viscoplasticity (5-35)
Workshop 2 Steel Bracket Modified by (2008): Dr. Vijay K. Goyal Associate Professor, Department of Mechanical Engineering University of Puerto Rico at.
Bending of a Pipe by a Punch Workshop 8. Workshop Supplement March 15, 2001 Inventory # WS8-2 Utility Menu > File > Read Input from … > pipe.inp.
WORKSHOP 15 PARASOLID MODELING NAS120, Workshop 15, November 2003 WS15-1.
Can Opener Estimated Time for Completion: 20 minutes Experience Level: Higher MSC.Marc 2005r2 MSC.Patran 2005r2.
Workshop 9-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 9 Buckling Analysis of Plate.
WS8A-1 WORKSHOP 8A TENSION COUPON NAS120, Workshop 8A, November 2003.
Mar120 - Test Specimen Necking NECKING OF A TEST SPECIMEN Symmetry Plane.
NAS133, Workshop 2, August 2011 Copyright© 2011 MSC.Software Corporation WS2 - 1 WORKSHOP 2 SOLID-TO-SOLID CONTACT.
MAR120, Workshop 1, December 2001 WORKSHOP 01 LINEAR AND NONLINEAR ANALYSIS OF A CANTILEVER BEAM.
Stress Relaxation Workshop Six REFERENCE: Training Manual Implicit Creep (4-32)
WS16-1 MAR120, Workshop 16, December 2001 WORKSHOP 16 SPECTRUM RESPONSE ANALYSIS OF A TRANSMISSION TOWER
Workshop 7B-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 7B Structure With Spring Support.
Workshop 4-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 4 Structure Subjected to Enforced Displacement at an incline.
Chapter Overview In this exercise, a model of a cylindrical pipe is modeled as being crushed between rigid bodies. This model is created using 2D shell.
WORKSHOP 7 LINEAR CONTACT
WORKSHOP 2 SOLID-TO-SOLID CONTACT
FREQUENCY RESPONSE ANALYSIS OF TRANSMISSION TOWER
ANALYSIS OF A RUBBER SEAL
Workshop 5A Metal Plasticity
NECKING OF A TEST SPECIMEN
ENFORCED MOTION IN TRANSIENT ANALYSIS
Presentation transcript:

Staple Pin Simulation Estimated Time for Completion: ~35min Experience Level: Lower MSC.Patran 2005 r2 MSC.Marc 2005 r2

2 Topics Covered Topics covered in Modeling Defining the system of units. Importing Geometry file. Parasolid format (.x*t*) Creating Surface by extruding curves. Easiest way to create 3-D shell structure with uniform cross section. Applying Equivalence. It eliminates any duplicated nodes and cracks created by the mesher. Creating Elastic-perfectly plastic material. The material non-linearity is approximated by a constant. Topic covered in Analysis Applying Deformable and Rigid bodies contact. Fixed and moved rigid bodies. Applying Friction coefficient. Applying Large Displacement/Large Strains Analysis. Applying Load steps (Loading and Unloading). Topics covered in Review Creating XY plots and animations.

3 Rigid body motion and contact analysis are often used in break forming simulation. In this example, a staple pin is pushed by the upper rigid surface and formed due to the curvature of the lower rigid surface. Loading: Upper rigid surface moves down to push a staple pin. Unloading: Upper rigid surface goes back to its original position. Problem Description b a F max =?

4 Given Parameters System of Units Length unit: mm Mass unit: tonne Time unit: sec 1 force unit = tonne x mm/s^2 = 1N 1 stress unit = N / mm^2 = 1e6 Pa 1 density unit = tonne/mm^3 =1e-12 kg/m^3 Aluminum pin Dimensions: a=6, b=12, width=0.5, height=0.3 Material properties: Young’s Modulus=63000, Poisson’s ratio=0.3, Yield strength=30, Density= e-9 Simplifying the problem Apply Symmetric boundary conditions at the center of the pin. u x =θ y = θ z =0 on the symmetric boundary. At lease u x =0 is required to obtain the desired solution. Other possible simplifications. Only half of the geometry can be used. Instead Shell elements, use Beam elements. Problem Description

5 Find the deformed shape of the staple pin and locate the maximum stress occurring. Find the maximum load required.

6 Expected Results Von Mises Stress Loading Unloading

7 Create Database and Import a Geometry File a.Click File menu / Select New b.In File Name enter staple.db c.Click OK d.Select Analysis Code to be MSC. Marc e.Click OK f.Click File menu / Select Import g.Select Object to be Model h.Select Source to be Parasolid xmt i.Select the model file, stapler.xmt_txt j.Click Apply. a defg hi jb c You will see the summary window for importing the Parasolid file. Click OK to close the window.

8 Create Surface a a.Click Geometry icon b.Select Action to be Create c.Select Object to be Surface d.Select Method to be Extrude e.In Translation Vector, enter f.Uncheck Auto Execute g.In Curve List, enter Curve 1:9 or select all lines in the view port h.Click Apply Create Surfaces by extruding existing curves b c defgh

9 Create a Node Create a node to control the upper rigid surface a.Click Element icon b.Select Action to be Create c.Select Object to be Node d.Select Method to be Edit e.Uncheck Auto Execute f.In Node Location List, enter [0,8.0,0] g.Click Apply a You can visualize nodes by toggling this icon. b c defg

10 Create Mesh Seed Create bias mesh seeds on the existing curves. a.Click Element icon b.Select Action to be Create c.Select Object to be Mesh Seed d.Select Type to be Two Way bias e.In Number, enter 20 f.In L2/L1, enter 4 g.Uncheck Auto Execute h.In Curve List, enter Curve 7 Surface or select the top lines of the staple pin. i.Click Apply a Repeat (d) – (i) for the following new sets of Mesh Seeds TypeNumberL2/L1Curve List (Application Region) One Way Bias104Curve 6 Surface (Right side of the pin) One Way Bias100.25Curve 6 Surface (Left side of the pin) Uniform6n/aCurve 1 Surface (Top Left corner) Uniform6n/aCurve 2 Surface 2.2 (Top Right corner) Two way bias One way bias Uniform mesh b c d efghijklmj klm

11 Create Mesh and Apply Equivalence This will eliminate any extra overlapping nodes created by the mesher. See below for the comparison. a.Select Action to be Create b.Select Object to be Mesh c.Select Type to be Surface d.In Surface List, enter Surface 1 2 6:8 or select all surfaces of the pin e.Click Apply f.Select Action to be Equivalence g.Select Object to be All h.Select Method to be Tolerance Cube i.Click Apply Applying Equivalence shows the eliminated nodes on the veiwport a bc d e f g h i

12 Create the Material Properties a.Click Materials icon b.Select Action to be Create c.Select Object to be Isotropic d.Select Method to be Manual Input e.In Material Name, enter Aluminum f.Click Input Properties g.Select Constitutive Model to be Elastic h.In Elastic Modulus, enter i.In Possion Ratio, enter 0.3 j.In Density, enter e-9 k.Click OK l.Click Apply m.Click Input Properties again n.Select Constitutive Model to be Plastic o.Select Type to be Perfectly Plastic p.In Yield Stress, enter 30 q.Click OK r.Click Apply a bc d ef g h ij klmnopqr

13 Create the Element Properties a.Click Properties icon b.Select Action to be Create c.Select Object to be 2D d.Select Type to be Thick Shell e.In Property Set Name, enter pin f.Select Options to be Homogeneous and Standard Formulation g.Click Input Properties h.Click Mat Prop Name icon i.Select Aluminum j.In [Thickness], enter 0.3 k.Click OK l.In Application Region, enter Surface 1 2 6:8 or select elements on the pin using the mouse left button m.Click Add n.Click Apply abc d e fghi j klmn

14 Create Boundary Conditions a.Click Loads/BCs icon b.Select Action to be Create c.Select Object to be Displacement d.Select Type to be Nodal e.In New Set Name, enter drive_on f.Click Input Data g.In Translations, enter h.In Rotations, enter i.Click OK j.Click Select Application Region k.Select Geometry Filter to be FEM l.In Select Nodes, enter Node 1 or select the nodes made above the rigid body m.Click Add n.Click OK o.Click Apply Create the Boundary Conditions for driving on and off of the top rigid body. a Repeat (e) – (o) for the following new sets of BCs New Set NameTranslationsRotationsSelect Nodes drive_off Node 1 Sym_disp Node 112:175:21 Drive on/off bcd ef gh ijkl m no Sym_disp

15 Create Boundary Conditions a.Select Action to be Create b.Select Object to be Contact c.Select Type to be Element Uniform d.Select Option to be Deformable Body e.In New Set Name, enter contact_mid f.Select Target Element Type to be 2D g.Click Select Application Region h.Select Geometry Filter to be Geometry i.In Select Nodes, enter Surface 1 2 6:8 or select all surfaces of the pin j.Click Add k.Click OK l.Click Apply Create the Deformable Contact Body. a bc d efgh ij kl

16 Create Boundary Conditions a.Select Action to be Create b.Select Object to be Contact c.Select Type to be Element Uniform d.Select Option to be Rigid Body e.In New Set Name, enter contact_top f.Select Target Element Type to be 2D g.Click Input Data h.Select Motion Control to be Force/Moment i.In First Control Node, enter Node 1, or select the controlling node. j.Click OK k.Click Select Application Region l.Select Geometry Filter to be Geometry m.In Select Nodes, enter Surface 9 or select the rigid body above the pin n.Click Add o.Click OK p.Click Apply Create the Rigid Contact Bodies. Repeat (e) – (p) for the following new sets of BCs New Set NameMotion ControlDisplacement (vector)Select Surfaces contact_bottomPosition Surface 3:5 ab cd efg h ijk lm nop

17 Create Boundary Conditions a.Select Action to be Modify b.Select Object to be Contact c.Select Type to be Element Uniform d.Select Option to be Rigid Body e.In Select Set to Modify, enter contact_top f.Select Target Element Type to be 2D g.Click Modify Data h.Click OK i.Click Apply Correct the Contact Normals for the rigid bodies. a bcde fghij The Contact Normals of the top surface need to be flipped.

18 Create Boundary Conditions a.Select Action to be Create b.Select Object to be Inertial Load c.Select Type to be Element Uniform d.In New Set Name, enter gravity e.Select Target Element Type to be 2D f.Click Input Data g.In Trans Accel, enter h.Click OK i.Click Select Application Region j.Select Geometry Filter to be Geometry k.In Select Nodes, enter Surface 1 2 6:8 or select the Surfaces of the pin l.Click Add m.Click OK n.Click Apply Create the Fixed Boundary Conditions You must see all Boundary Conditions as shown in this figure abc def g hi j klmn

19 Create Load Cases a.Click Load Cases icon b.Select Action to be Create c.In Load Case Name, enter loading d.Click Input Data e.In Select Individual Loads/BCs, select Conta_contact_bottom Conta_contact_mid Conta_contact_top Displ_drive_on Displ_sym_disp f.Click OK g.Click Apply Create the Loading and Unloading load cases Repeat (c) – (g) for the following sets of BCs Load Case NameSelect Individual Loads/BCs unloading Conta_contact_bottom Conta_contact_mid Conta_contact_top Displ_drive_off Displ_sym_disp Inert_gravity a bcd e fg You must see the assigned Load/BCs in this window after selecting the individual Loads/BCs

20 Run Analysis a.Click Analysis icon b.Select Action to be Analyze c.Select Object to be Entire Model d.Select Method to be Full Run e.In Job Name, enter staplePin f.Click Load Step Creation g.In Load Step Name, enter LoadingStep h.Click Select Load Cases i.In Available Load Cases, select loading j.Click OK k.Click Solution Parameters l.Select Linearity to be NonLinear m.Select Nonlinear Geometry Effects to be Large Displacement/Large Strains n.Click Load Increment Parameters o.Select Increment Type to be Adaptive p.In [Trial Time Step Size:], enter 0.05 q.Click OK Analysis Options for the first load step ab c d e fghij k l m nopq

21 Run Analysis a.Click Iteration Parameters b.In Max # of Iterations per Increment, enter 20 c.Click OK d.Click Contact Table e.Click Touch All f.Click OK g.Click OK h.Click Apply Analysis Options for the first and the second load steps a b c d efgh Repeat from (g) in the previous slide to (h) in this slide for the Second Load Step Load Step Name Available Load Cases [Trial Time Step Size:], Max # of Iterations per Increment UnloadingStepunloading0.0520

22 Run Analysis and Monitor a.Click Load Step Selection b.In Existing Load Steps, select LoadingStep UnloadingStep c.In Selected Load Steps, select Default Static Step d.Click OK e.Click Apply f.Select Action to be Monitor g.Select Object to be Job h.Click Apply Select Load Steps to run and Run Analysis a bcd e fg h You must see the Load Steps in a certain order you want to run.

23 Read Results Read Results File a.In the Marc Job Monitoring window, if the Exit Number is 3004, the problem has been solved successfully. b.Click Cancel c.Select Action to be Read Results d.Select Object to be Result Entities e.Select Method to be Attach f.Click Select Results File g.Select staplePin.t16 h.Click OK i.Click Apply abcdefghi

24 Reviewing the Results hijk a.Click Results icon b.Select Action to be Create c.Select Object to be Quick Plot d.In Select Result Cases, select the last results Time=1.0 is the end of the first load step Time=2.0 is the end of the first load step e.In Select Fringe Result, select Displacement, Translation f.In Select Deformation Result, select Displacement, Translation g.Click Apply Check the viewport to see the result plot h.In Select Fringe Result, select Stress, Global System i.Select Quantity to be von Mises j.In Select Deformation Result, select Displacement, Translation k.Click Apply Check the viewport to see the result plot Review the Displacement Results and Stress Results abc d efg

25 Reviewing the Results a.Select Action to be Create b.Select Object to be Graph c.Select Method to be Y vs X d.In Select Result Cases, select all results Time=1.0 is the end of the first load step Time=2.0 is the end of the first load step e.Select Y: to be Global Variable f.Select Variable: to be Body contact_bottom, Force Y g.Select X: to be Global Variable h.Select Variable: to be Time i.Click Apply Check the viewport in new window to see the result graph Review the Reaction force at the bottom a b c d efghi

26 Results Rigid body displacement

27 Results Load requirement for step 1 Total reaction force (Ry) at the bottom surface = - load requirement F Max = 0.28N R Min = -0.28N

28 Results Von Mises stress at the end of load step 1 at the end of load step 2 σ Max =32.1e6 Pa σ Max =24.6e6 Pa

29 Animation

30 Further Analysis (Optional) Problem modification Instead Aluminum, use Steel as a pin. Find the load requirement. Material properties of Steel: Young’s Modulus=2.1e5MPa, Poisson’s ratio=0.3, Yield strength=250MPa What do you expect if you staple 10 sheets(1mm) of paper together? Will the required load be increased or decreased? Modeling If you want to use ‘cm’ as your length unit, what other units do you need to change? Try without the gravity in the load step 2. Can you find the symmetrical results without the symmetric condition at the center of the pin? Solution options Increase [Trial Time Step Size:] for the load step 2. What value is the maximum to obtain the result?