Semi-regular 3D mesh progressive compression and transmission based on an adaptive wavelet decomposition 21 st January 2009 Wavelet Applications in Industrial.

Slides:



Advertisements
Similar presentations
Geometry Clipmaps: Terrain Rendering Using Nested Regular Grids
Advertisements

Shape Compression using Spherical Geometry Images
Surface Compression with Geometric Bandelets Gabriel Peyré Stéphane Mallat.
Laboratoire d'InfoRmatique en Image et Systèmes d'information FRE 2672 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/Ecole.
Two-Dimensional Wavelets
Multiresolution Analysis for Surfaces of Arbitrary Topological Type Michael Lounsbery Michael Lounsbery Alias | wavefront Alias | wavefront Tony DeRose.
Multiscale Representations for Point Cloud Data Andrew Waters Manjari Narayan Richard Baraniuk Luke Owens Daniel Freeman Matt Hielsberg Guergana Petrova.
CS Peter Schröder Subdivision I: The Basic Ideas.
1 Outline  Introduction to JEPG2000  Why another image compression technique  Features  Discrete Wavelet Transform  Wavelet transform  Wavelet implementation.
CS CS 175 – Week 4 Mesh Decimation General Framework, Progressive Meshes.
Haptic Rendering using Simplification Comp259 Sung-Eui Yoon.
Progressive Encoding of Complex Isosurfaces Haeyoung Lee Mathieu Desbrun Peter Schröder USC USC Caltech.
Frédéric Payan PhD Thesis Supervisor : Marc Antonini
1 Displaced Subdivision Surfaces Aaron Lee Princeton University Henry Moreton Nvidia Hugues Hoppe Microsoft Research.
Oriented Wavelet 國立交通大學電子工程學系 陳奕安 Outline Background Background Beyond Wavelet Beyond Wavelet Simulation Result Simulation Result Conclusion.
1 Wavelets and compression Dr Mike Spann. 2 Contents Scale and image compression Signal (image) approximation/prediction – simple wavelet construction.
Compressing Texture Coordinates Martin IsenburgJack Snoeyink University of North Carolina at Chapel Hill with h Selective Linear Predictions.
Application of Generalized Representations for Image Compression Application of Generalized Representations for Image Compression using Vector Quantization.
Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.
Department of Computer Engineering University of California at Santa Cruz Data Compression (3) Hai Tao.
Face Fixer Compressing Polygon Meshes with Properties Martin Isenburg Jack Snoeyink University of North Carolina at Chapel Hill.
Spatial and Temporal Data Mining
Surface Simplification & Edgebreaker Compression for 2D Cel Animations Vivek Kwatra & Jarek Rossignac GVU Center, College of Computing Georgia Institute.
Lossless Compression of Floating-Point Geometry Martin Isenburg UNC Chapel Hill Peter Lindstrom LLNL Livermore Jack Snoeyink UNC Chapel Hill.
With Parallelogram Prediction Compressing Polygon Mesh Geometry Martin Isenburg UNC Chapel Hill Pierre Alliez INRIA Sophia-Antipolis.
Digital Days 29/6/2001 ISTORAMA: A Content-Based Image Search Engine and Hierarchical Triangulation of 3D Surfaces. Dr. Ioannis Kompatsiaris Centre for.
Visualization and graphics research group CIPIC January 30, 2003Multiresolution (ECS 289L) - Winter MAPS – Multiresolution Adaptive Parameterization.
Content Subdivision First some basics (control point polygon, mesh)
Compressing Polygon Mesh Connectivity
Kumar, Roger Sepiashvili, David Xie, Dan Professor Chen April 19, 1999 Progressive 3D Mesh Coding.
Frederic Payan, Marc Antonini
Irregular to Completely Regular Meshing in Computer Graphics Hugues Hoppe Microsoft Research International Meshing Roundtable 2002/09/17 Hugues Hoppe Microsoft.
Martin Isenburg UC Berkeley Jack Snoeyink UNC Chapel Hill Early Split Coding of Triangle Mesh Connectivity.
Visualization and graphics research group CIPIC January 21, 2003Multiresolution (ECS 289L) - Winter Dynamic View-Dependent Simplification for Polygonal.
Visualization and graphics research group CIPIC Feb 18, 2003Multiresolution (ECS 289L) - Winter Progressive Meshes (SIGGRAPH ’96) By Hugues Hoppe.
Progressive Encoding of Complex Iso-Surfaces Peter Schröder Caltech ASCI Alliance Center for Simulation of Dynamic Response of Materials Joint work with:
Notes by Shufang Wu Embedded Block Coding with Optimized Truncation - An Image Compression Algorithm Notes by Shufang Wu
Representation and Compression of Multi-Dimensional Piecewise Functions Dror Baron Signal Processing and Systems (SP&S) Seminar June 2009 Joint work with:
Embedded Zerotree Wavelet Embedded Zerotree Wavelet - An Image Coding Algorithm Shufang Wu Friday, June 14,
Lossy Compression Based on spatial redundancy Measure of spatial redundancy: 2D covariance Cov X (i,j)=  2 e -  (i*i+j*j) Vertical correlation   
Compressing Multiresolution Triangle Meshes Emanuele Danovaro, Leila De Floriani, Paola Magillo, Enrico Puppo Department of Computer and Information Sciences.
 Coding efficiency/Compression ratio:  The loss of information or distortion measure:
Surface Simplification Using Quadric Error Metrics Michael Garland Paul S. Heckbert.
Estimation-Quantization Geometry Coding using Normal Meshes
Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe.
Layered Coding Basic Overview. Outline Pyramidal Coding Scalability in the Standard Codecs Layered Coding with Wavelets Conclusion.
Wavelet-based Coding And its application in JPEG2000 Monia Ghobadi CSC561 final project
3D Geometry Coding using Mixture Models and the Estimation Quantization Algorithm Sridhar Lavu Masters Defense Electrical & Computer Engineering DSP GroupRice.
1 Compressing Triangle Meshes Leila De Floriani, Paola Magillo University of Genova Genova (Italy) Enrico Puppo National Research Council Genova (Italy)
UMR 5205 C. ROUDETF. DUPONTA. BASKURT Laboratoire d'InfoRmatique en Image et Systèmes d'information UMR5205 CNRS/INSA de Lyon/Université Claude Bernard.
Extraction and remeshing of ellipsoidal representations from mesh data Patricio Simari Karan Singh.
Advances in digital image compression techniques Guojun Lu, Computer Communications, Vol. 16, No. 4, Apr, 1993, pp
Spectral Compression of Mesh Geometry (Karni and Gotsman 2000) Presenter: Eric Lorimer.
1 Wavelets on Surfaces By Samson Timoner May 8, 2002 (picture from “Wavelets on Irregular Point Sets”) In partial fulfillment of the “Area Exam” doctoral.
Efficient Streaming of 3D Scenes with Complex Geometry and Complex Lighting Romain Pacanowski and M. Raynaud X. Granier P. Reuter C. Schlick P. Poulin.
SpaDaGIS Efficiency Issues in Multi-resolution Terrain Modeling Leila De FlorianiPaola Magillo Leila De Floriani * Paola Magillo Department of Computer.
CASA 2006 CASA 2006 A Skinning Approach for Dynamic Mesh Compression Khaled Mamou Titus Zaharia Françoise Prêteux.
Fifth International Conference on Curves and Surfaces Incremental Selective Refinement in Hierarchical Tetrahedral Meshes Leila De Floriani University.
A Parallel Hierarchical Solver for the Poisson Equation Seung Lee Deparment of Mechanical Engineering
Presenter : r 余芝融 1 EE lab.530. Overview  Introduction to image compression  Wavelet transform concepts  Subband Coding  Haar Wavelet  Embedded.
Entropy vs. Average Code-length Important application of Shannon’s entropy measure is in finding efficient (~ short average length) code words The measure.
Streaming Compressed 3D Data on the Web using JavaScript and WebGL Université de Lyon, INSA-Lyon LIRIS UMR CNRS 5205 Guillaume Lavoué Florent Dupont Velvet.
12/12/2003EZW Image Coding Duarte and Haupt 1 Examining The Embedded Zerotree Wavelet (EZW) Image Coding Method Marco Duarte and Jarvis Haupt ECE 533 December.
Level of Detail (LOD) Models Part Two
Embedded Zerotree Wavelet - An Image Coding Algorithm
Mesh Parameterization: Theory and Practice
Wavelet-based Compression of 3D Mesh Sequences
Chap 10. Geometric Level of Detail
Subdivision Surfaces 고려대학교 컴퓨터 그래픽스 연구실 cgvr.korea.ac.kr.
Presentation transcript:

Semi-regular 3D mesh progressive compression and transmission based on an adaptive wavelet decomposition 21 st January 2009 Wavelet Applications in Industrial Processing VI IS&T/SPIE Symposium on Electronic Imaging C. ROUDET, F. DUPONT & A. BASKURT croudet, fdupont,

2 Context 3D objects  Used in various applications  Lots of different models Triangular meshes  More and more detailed  Adapted to heterogeneous resources  Irregularly sampled

3 Triangular meshes 4 bytes x3 coordinates 4 bytes x3 indexes Mesh regularity  Link to vertex valence (σ) V : {V i = (x i, y i, z i ) є R 3 / 0 ≤ i <|V|} F : {F i = j, k, l є Z 3 / 0 ≤ i <|F|} I - Context II - WT III – Our approach IV - Results irregular regular semi-regular Mesh M = (V, F) Geometry Connectivity Triangular mesh 36 bytes / vertex 288 bits / vertex  3 types of meshes : 1. irregular 2. semi-regular :  W V |  V i,V j є W : σ ( V i ) ≠ σ ( V j ) 3. regular :  V i,V j є V : σ ( V i ) = σ ( V j ) ∩

4 Progressive representations Advantages :  Efficient rendering  Data adapted to heterogeneous devices and networks Various possible representations :  Subdivision surfaces [Doo & Sabin, 78] + wavelets [Lounsbery, 97] ≈ bits / v  Irregular refinements [Hoppe, 96], [Gandoin & Devillers, 02] ≈ 2 bytes / v

5 Multiresolution analysis L 2 H L L H 1/4 1/2 f L H L H L H … details M0M0 M m-1 MmMm H [½ ½] [1 -1]

6 Geometric wavelets Filter bank generalization  Spatial multiresolution analysis Advantages :  Reduce computation costs  Simplified filters  Analysis & synthesis in linear time [Sweldens, 95] [Lounsbery, 97] S : Split P : Predict U : Update reconstructed signal coarse signal details signal even odd [Mallat, 89] coarse signal details signal reconstructed signal

7 MnMn M n-1 On meshes Update Predict even odd coarse signal details reconstructed signal

8 Overview of our approach CHANNELCHANNEL Global analysis Multiresolution segmentation Local analysis Local encoding Local decoding binary flow Remesh wavelet coefficients irregular 3D model semi-regular 3D model clusters patches Coarse gluing Local synthesis binary flow resolution levels Visualization Classification

9 A n-3 MnMn A n-2 A n-1 D n-1 D n-2 D n-3 Multiresolution representation Level n-1Level n-2Level n-3Level n-1 … Level n original vertices vertices vertices vertices Multiresolution weighting 01 Wavelet magnitude x10

10 Classification and region growing Magnitude Polar angle vertices Classification (K-means) 2 clusters Magnitude Polar angle Magnitude Polar angle vertices facets K=2 Region growing Global analysis Level n original Level n-1

11 Cluster « coarse » projection Coarse projection Region extraction Level n (original) Level n-1 Level n-5 Level n-2 … Level n-4Level n-5 Fine projection t0t0 t2t2

12 Cluster « fine » projection Initial classification Level n-2Level n-4 …Level n-5 Coarse projection Region extraction Level n (original) Level n-1 Level n-5 Fine projection

13

14 Different possible segmentations Multiresolution weighting on the finest approximation + « coarse » & « fine » projections Multiresolution weighting on the coarsest level + « fine » projection 5 regions 6 regions 5 regions 11 regions 9 regions

15 Independent analysis and coding CHANNELCHANNEL + Coding of partitioning information :  nb regions, cluster type, filters used, … : losslessly compressed zerotree Connectivity Arithmetic coding symbol list Quantization Geometry [Touma & Gotsman, 98] … [Khodakovsky et al., 00] Arithmetic coding Arithmetic coding symbol list Quantization [Touma & Gotsman, 98] Arithmetic coding Connectivity Geometry

16 Global vs local analysis PSNR = 20.log 10 BBdiag / d BBdiag = Bounding Box diagonal d = Hausdorff distance Rate / distortion curves (unique prediction scheme used) Local analysis (2 nd weighting) additional cost Local analysis (1 st weighting) Global analysis Remeshing error Bitrate (bits / irregular vertex)

17 Progressivity of the reconstruction 0,23 bit / vertex 0,68 bit / vertex 1,66 bit / vertex 6,54 bit / vertex

18 Other applications Adaptive denoising & watermarking View-dependent transmission & reconstruction (ROI) Error-resilient coding e : error ( x ) Global analysis Classification Adaptive reconstructions: with prédiction without 554 KB e: 0,203 36% rough 218 KB e: 10,3 218 KB e: 17, bytes bytes

19 Conclusion and future work Adaptive multiresolution framework  Used to propose view-dependent transmission & visualization  Based on a multiresolution segmentation  Patch-independent analysis, quantization & encoding Future work:  Design new prediction schemes adapted to non-smooth regions  Optimize patch-quantization and binary allocation