Photoactive Molecular Switches Center for Supramolecular Science Department of Chemistry Françisco M. Raymo.

Slides:



Advertisements
Similar presentations
Laurea specialistica in Scienza e Ingegneria dei Materiali
Advertisements

DAT2343 Basic Logic Gates © Alan T. Pinck / Algonquin College; 2003.
Logic Gates.
Programmable Logic Controllers.
Work Package 4: Photochemical Devices Midterm-Review Meeting Molecular Machines- Design and Nano-Scale Handling of Biological Antetypes and Artificial.
Architecture of a Charge-Transfer State Regulating Light Harvesting in a Plant Antenna Protein Tae Kyu Ahn, et al. Science 320, 794 (2008) Miyasaka Lab.
Frontier NanoCarbon Research group Research Center for Applied Sciences, Academia Sinica Applications of Graphitic Carbon Materials Dr. Lain-Jong Li (Lance.
Dye-Nanochannel Composites for Solar Energy Conversion Devices Gion Calzaferri Department of Chemistry and Biochemistry, University of Bern, Switzerland.
Dynamics and Mechanisms of the Multiphoton Gated Photochromic Reaction of the Highly Fluorescent Diarylethene Derivatives Miyasaka Lab Kunishi Tomohiro.
BODIPY COMPOUNDS AS NON-INNOCENT π- SPACERS FOR DSSC DYES Devin D. Machin, Catherine Bonnier, Bryan D. Koivisto * Science at the Interface August 14, 2012.
Digital Electronics Dan Simon Cleveland State University ESC 120 Revised December 30, 2010.
SUPRAMOLECULAR PHOTONICS. Absorbance of light ( nm) by substance.
Solvatochromism and Photo-Induced Intramolecular Electron Transfer Katelyn J. Billings; Bret R. Findley 1 1 Department of Chemistry and Physics, Saint.
Selective and Sensitive Sensing of
Blue-Colored Donor-Acceptor [2]Rotaxane Taichi Ikeda, Ivan Aprahamian, and J. Fraser Stoddart, Org. Lett. 2007, 9, Kazuhiro IKUTA Tobe Lab.
Patterning through Controlled Submolecular Motion: Rotaxane-Based Switches and Logic Gates that Function in Solution and Polymer Films David A. Leigh et.
LOGIC GATES Logic generally has only 2 states, ON or OFF, represented by 1 or 0. Logic gates react to inputs in certain ways. Symbol for AND gate INPUT.
Chapter 2: Fundamentals of Digital Electronics Dr Mohamed Menacer Taibah University
Logic Gates How Boolean logic is implemented. Transistors used as switches to implement Boolean logic: ANDOR Logic with Transistors.
Light Harvesting and Energy Transfer Oleksandr Mikhnenko June
1 Roland Kersting Department of Physics, Applied Physics, and Astronomy The Science of Information Technology Computing with Light the processing.
1 Miyasaka Laboratory Yusuke Satoh David W. McCamant et al, Science, 2005, 310, Structural observation of the primary isomerization in vision.
Vibrational Relaxation of CH 2 ClI in Cold Argon Amber Jain Sibert Group 1.
Eng. Mohammed Timraz Electronics & Communication Engineer University of Palestine Faculty of Engineering and Urban planning Software Engineering Department.
Logic Gates It’s Only Logical. Logic Gates Are the switches that computers and similar devices use. They hold their state until something changes. Are.
Sneha.  Gates Gates  Characteristics of gates Characteristics of gates  Basic Gates Basic Gates  AND Gate AND Gate  OR gate OR gate  NOT gate NOT.
Photoelectron Spectroscopy Study of Ta 2 B 6 − : A Hexagonal Bipyramidal Cluster Tian Jian, Wei-Li Li, Constantin Romanescu, Lai-Sheng Wang Department.
Design and Applications of Luminescent Logic Systems.
Katsuki Okuno Miyasaka Laboratory 1.  Introduction Definition Example of Photochromic Molecules History  Recent research Photochromism in single crystal.
Design and Applications of Luminescent Sensing Systems.
Beath High School - Int 1 Physics1 Intermediate 1 Physics Electronics Glossary AND gate to device digital signals to inverter LDR to logic circuit logic.
Rotaxane 2010/06/02 Tobe Lab. Furutani Hajime 1. Contents What is Rotaxane? History -First Synthesis -Host-Guest Chemistry -Improved Synthetic Method.
1 Convergent Synthesis of Alternating Fluorene-p-xylene Oligomers and Delineation of the (Silver) Cation- Induced Folding Vincent J. Chebny and Rajendra.
8 Photosynthesis.
Figure
Simulation Project Paper: Resolving the thermal challenges for
Chemical Approaches to Nanostructured Materials Springer Handbook of Nanotechnology (2004): Ch. 2.
AND Gate Inputs Output Input A (Switch) Input B (Switch) Output Y (Lamp) 0 (Open) 0 (OFF) A B Lamp.
The light reactions convert solar energy to the chemical energy of ATP and NADPH ● Chloroplasts are solar-powered chemical factories ● The conversion.
Theoretical Study on the Stability of Metallasilabenzyne and Its Isomers Speaker: Xuerui Wang Advisor : Jun Zhu.
Logic Gates and Boolean Algebra Introduction to Logic II.
Synthesis of Carbon Quantum Dots and Their Use as Photosensitizers Anthony J. Lemieux, Christine A. Caputo Department of Chemistry, University of New Hampshire,
Multiphoton-gated cycloreversion reaction of a photochromic diarylethene derivative as revealed by femtosecond two-color and two-pulse excitation Miyasaka.
One-Color Reversible Control of Photochromic Reactions in a Diarylethene Derivatives: Three-Photon Cyclization and Two-Photon Cycloreversion by a Near-Infrared.
Logic Gates Unit 16.
学 术 报 告 报告名称: Functional Inorganic Materials: Molecular Recognition, Chiral Separation and Water Oxidation   报告人:Prof.Samar Kumar Das 时间: (周二)
Logic Gates.
Molecular Magnetic Switches
You have 5 minutes to look over your table of sensor and outputs ready for a spot check on the different symbols Start Timer 5 mins
Digital electronics and logic gates
KS4 Electricity – Electronic systems
KS4 Electricity – Electronic systems
Photoswitchable Intramolecular H-Stacking of Perylenebisimide
Department of Chemistry & Biochemistry, Montclair State University
How Boolean logic is implemented
Fundamentals of Computer Science Part i2
Literature Introduced by Yuna Kim
Modulation of Photoswitching Profiles by 10,11 Dialkoxy-methyl Substituents in C2-Symmetric Dibenzosuberane-Based Helicenes Wen-Ching Chen,[b] Po-Chiao.
Logic Gates.
JC Technology Logic Gates.
Machines take in energy and dissipate it while doing mechanical work, e.g. apply a force over a distance – are not in thermodynamic equilibrium Molecular.
A Simple Molecular Machine Operated by Photoinduced Proton Transfer
Influence of the Substrate on the Mobility of Individual Nanocars
Zheng Shi, Ping Peng, Daniel Strohecker, and Yi Liao*
KS4 Electricity – Electronic systems
Logic Gates.
Molecular Response System Based on Dynamic Redox Properties, Redox System, Molecular Response System, Molecular Devices, Molecular Crystal, Charge-transfer,
Angew. Chem. Int. Ed., 2010, 49, Early View
Logic Gates By: Asst Lec. Besma Nazar Nadhem
Agenda Lecture Content: Combinatorial Circuits Boolean Algebras
Presentation transcript:

Photoactive Molecular Switches Center for Supramolecular Science Department of Chemistry Françisco M. Raymo

Sources Books  Feringa, B. L. (ed.): "Molecular Switches" Wiley-VCH: Weinheim, 2001  Balzani, V.; Venturi, M.; Credi, A.: "Molecular Devices and Machines" Wiley-VCH: Weinheim, 2003 Journals  Irie, M. (ed.): "Photochromism: Memories and Switches" Chem. Rev. 2000, 100, Issue No. 5  Stoddart, J. F. (ed.): “Molecular Machines” Acc. Chem. Res. 2001, 46, Issue No. 6 Reviews  Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F.: "Artificial Molecular Machines" Angew. Chem. Int. Ed. 2000, 39, 3348–3391  Raymo, F. M.: "Digital Processing and Communication with Molecular Switches" Adv. Mater. 2002, 14, 401–414

Outline Molecular Switches  Definitions  Classification Chemical Control  Operating Principles   Acid/Base Equilibria  Cation Binding  Electron Transfer  Chemo-Optical Logic Gates   Fluorescence Modulation  Transmittance Modulation  Supramolecular Switches   Fluorescence Modulation Optical Control  Operating Principles   cis/trans Isomerizations  Ring Opening and Closing  Electron and Energy Transfer  Chemical and Optical Control   Absorbance Modulation  Fluorescence Modulation  All-Optical Molecular Switches   Absorbance Modulation  Fluorescence Modulation  Refractive Index Modulation Conclusions  Summary  Comparison of Chemo-Optical and All-Optical Molecular Switches

Definitions Input Switching High OutputLow Output What is a molecular switch? It is a molecular or supramolecular system able to modulate an output signal in response to an input stimulation!

More Definitions The input and output of a molecular switch can be:  Chemical signals  Electrical signals  Optical signals A molecular switch can have more than:  One input  One output  Two states Switching OutputInput The states of a molecular switch can be:  Isomers  An acid and its conjugated base  Different redox states of a molecule  The complexed and uncomplexed forms of a receptor

Optical Outputs Switching Optical OutputInput Absorbance Fluorescence Refractive Index Chemical Electrical Optical Photoactive molecular switches have optical outputs! Chemo-Optical Optical OutputChemical Input All-Optical Optical OutputOptical Input

Chemo-Optical Switches Chemo-Optical Optical OutputChemical Input Chemo-Optical Optical Output Chemical Input 2 Chemical Input 1 Chemo-Optical Optical Output Optical Input Chemical Input

All-Optical Switches All-Optical Optical OutputOptical Input Optical Output Optical Input 2 Optical Input 1 All-Optical Optical Output Optical Input 3 Optical Input 2 All-Optical Optical Input 1

One Chemical Input OutputInput FluorescenceH + or M + The chemical input controls the electron transfer process! Energy D* Excitation D* D A Electron Transfer D* Excitation A* A D Electron Transfer

Two Examples OutputInput Fluorescence H+H+ de Silva, A.P.; Gunaratne, H.Q.N.; McCoy, C.P. Nature 1993, 364, 42–44 Fluorescence M+M+

A Molecular NOT Gate High Fluorescence H+H+ Low Fluorescence H + Low High Fluorescence High Low The fluorescence is high only if the concentration of H + is NOT high! I01I01 O10O10 NOT

The fluorescence is high if the concentration of Na + OR K + is high! Na + Low High Fluorescence Low High K + Low High Low High M+M+ Fluorescence A Molecular OR Gate Low Fluorescence OR I10011I10011 O0111O0111 I20101I20101

Two Chemical Inputs Output Input 1Input 2 de Silva, A.P.; Gunaratne, H.Q.N.; McCoy, C.P. Nature 1993, 364, 42–44 H+H+ Na + Fluorescence

The fluorescence is high only if the concentrations of H + AND Na + are high! H + Low High Fluorescence Low High Na + Low High Low High H+H+ Fluorescence Na + A Molecular AND Gate I10011I10011 O0001O0001 I20101I20101 AND Low Fluorescence

Chemo-Optical Logic Gates Akkaya et al. Org. Lett. 2000, 2, 1725–1727 NAND dAMP / dTMP XOR H + / Ca 2+ de Silva et al. J. Am. Chem. Soc. 2000, 122, 3965–3966 de Silva et al. J. Am. Chem. Soc. 1999, 121, 1393–1394 NOR H + / Zn 2+ INH H + / O 2 Gunnlaugsson et al. J. Am. Chem. Soc. 2001, 123, 12866–12876

Design of A XOR Gate Output Input 1Input 2 de Silva, A. P.; McClenaghan, N. D. J. Am. Chem. Soc. 2000, 122, 3965–3966 H+H+ Ca 2+ Transmittance

Operating Principles Low Transmittance High Transmittance Ca 2+ H+H+ High Transmittance Low Transmittance Ca 2+ H+H+ A 390 nm Ca 2+ H+H+ H + + Ca 2+ Absorption Spectra

A Molecular XOR Gate The transmittance is high only if the concentration of either H + or Ca 2+ is high! H + Low High Transmittance Low High Low Ca 2+ Low High Low High H+H+ Ca 2+ Transmittance I10011I10011 O0110O0110 I20101I20101 XOR

A Molecular Half-Adder H+H+ Transmittance Ca 2+ XOR The two molecular switches share the same inputs and can be operated in parallel when dissolved in the same solution! H+H+ Fluorescence AND Ca 2+ H+H+ Transmittance Fluorescence Half-Adder

The fluorescence is high only if the concentrations of H + AND Ca 2+ are high! H + Low High Fluorescence Low High Na + Low High Low High H+H+ Fluorescence Ca 2+ The AND Component I10011I10011 O0001O0001 I20101I20101 AND

A Supramolecular Switch Credi, A.; Balzani, V.; Langford, S. J.; Stoddart, J. F. J. Am. Chem. Soc. 1997, 119, 2679–2681 Input 1 Input 2 Output

The Supramolecular Event  Electron Deficient Component Supramolecular Association Low Fluorescence Electron Rich Receptor High Fluorescence

Mechanism Electron transfer from the host to the guest quenches the fluorescence of the macrocyclic receptor! Low Fluorescence Energy D* Excitation D* D A Electron Transfer

A Chemical Input  Supramolecular Association Low Fluorescence High Fluorescence BuNH 2 The fluorescence is high if the concentration of BuNH 2 is high! Fluorescence Low High BuNH 2 Low High

Another Chemical Input  Supramolecular Association Low Fluorescence H+H+ High Fluorescence The fluorescence is high if the concentration of H + is high! Fluorescence Low High H + Low High

The fluorescence is high only if the concentration of either H + or BuNH 2 is high! H + Low High Fluorescence Low High Low BuNH 2 Low High Low High A Supramolecular XOR Gate I10011I10011 O0110O0110 I20101I20101 XOR Low Fluorescence H+H+ BuNH 2 BuNH 3 +

Optical Inputs Switching Mechanism cis/trans Isomerization Ring Opening/Closing Reaction Electron Transfer Energy Transfer Switching Optical OutputOptical Input Absorbance Fluorescence Refractive Index

cisrans Isomerizations cis/trans Isomerizations Dark 1 Azobenzene Dihydroxychalcone

Dihydrochalcones 365 nm 0.04 (  ) < 1 s 313 nm 0.40 (  ) Dark 22 h (t 1/2 ) Pina, F.; Roque, A.; Melo, M. J.; Maestri, M.; Belladelli, L.; Balzani, V. Chem. Eur. J. 1998, 4, 1184–1191 High Absorbance at 350 nm Low Absorbance at 350 nm The absorbance can be modulated turning on and off an optical input!

Fluorescence Modulation Dark 365 nm 7 (pH) 365 nm Off On Fluorescence Low High H + Low High Low High H+H+ 1 Fluorescence The fluorescence is high only if the optical input is on AND the concentration of H + is high! I10011I10011 O0001O0001 I20101I20101 AND

Ring Opening and Closing Spiropyran Dihydroazulene 1 Dark

Spiropyrans Raymo, F. M.; Giordani, S.; White, A. J. P.; Williams, D. J. J. Org. Chem. 2003, 68, 4158–4169 The absorbance at two different wavelengths can be controlled with a chemical and two optical inputs! 340 nm 560 nm or Dark High Absorbance at 563 nm H+H+ High Absorbance at 401 nm

Input String 000 I1I1 I2I2 I3I3 Input Signals 340 nm 560 nm H+H+ OFF ON O1O1 O2O2 Output Signals Absorbance at 401 nm Absorbance at 563 nm OFF 0 0 ON

Input String 100 I1I1 I2I2 I3I3 Input Signals 340 nm 560 nm H+H+ OFF 0 0 ON 1 O1O1 O2O2 Output Signals Absorbance at 401 nm Absorbance at 563 nm OFF 0 ON nm High Absorbance at 563 nm

Input String 101 I1I1 I2I2 I3I3 Input Signals 340 nm 560 nm H+H+ OFF 0 ON 1 1 O1O1 O2O2 Output Signals Absorbance at 401 nm Absorbance at 563 nm OFF 0 ON nm H+H+ High Absorbance at 401 nm

O1O1O2O2I1I1I2I2I3I3 Truth Table and Logic Circuit Output Signals Absorbance at 401 nm Absorbance at 563 nm Input Signals 340 nm560 nm H+H+

Dihydroazulenes Daub, J.; Fischer, C.; Salbeck, J.; Ulrich, K. Adv. Mater. 1990, 2, 366–369 The nature of the substituents affects dramatically the quantum yield of the photoinduced rearrangement!  (  ) 366 nm 0.40 (  ) Dark 4 h (t 1/2 ) Low Absorbance at 468 nm High Absorbance at 468 nm

411 nm Absorbance Modulation H+H+ Diederich et al. Helv. Chim. Acta 2001, 84, 743–777 The absorbance is high only if the optical input is on AND the concentration of H + is high! 411 nm Off On Absorbance Low High H + Low High Low High Absorbance at 500 nm I10011I10011 O0001O0001 I20101I20101 AND

Two Optical Inputs Diarylethene Furylfulgide 2 1

Diarylethenes 517 nm 0.28  313 nm 0.31 (  ) High Absorbance at 565 nm This diarylethene survives 13,000 switching cycles in aerated hexane! Matsuda, K.; Irie, M. J. Am. Chem. Soc. 2000, 122, 7195–7201

Fatigue Resistance >440 nm 0.01  313 nm 0.68 (  ) High Absorbance at 565 nm The concentration of this diarylethene drops to 80% after 80 switching cycles in aerated hexane and after 200 switching cycles in dearated hexane! Irie, M.; Thorsten, L.; Uchida, K.; Kobatake, S.; Shindo, Y. Chem. Commun. 1999, 747–750

Switching Speeds The concentration of this diarylethene drops to 80% after 70 switching cycles in aerated hexane and after 480 cycles in dearated hexane! Miyasaka, H.; Araki, S.; Tabata, A.; Nobuto, T.; Mataga, N.; Irie, M. Chem. Phys. Lett. 1994, 230, 249– nm 2–3 ps (  ) 355 nm 8 ps (  ) High Absorbance at 560 nm

Refractive Index Modulation Diarylethenes can be trapped in polymer matrices! Tanio, N.; Irie, M. Jpn. J. Appl. Phys. 1994, 33, 3942–3946  n (10 –3 ) Matrix Polyolefin Polymethyl methacrylate Polyfluoroethyl methacrylate (nm) nm 313 nm High Refractive Index Low Refractive Index

A Mach-Zehnder Interferometer Ebisawa, F.; Hoshino, M.; Sukegawa, K. Appl. Phys. Lett. 1994, 65, 2919– nm 313 nm High Refractive Index Low Refractive Index Port 1 Port 2 Port 3 Port 4 Si Wafer SiO 2 TiO 2 Core P3FMA–MMA Cladding SiO 2 TiO 2 Core Doped P3FMA–MMA Cladding Time (s) Power (  W) Port 3 Port On OffOnOff 313 nm 500 nm

Energy Transfer Irie, M.; Fukaminato, T.; Sasaki, T.; Tamai, N.; Kawai, T. Nature 2002, 420, 759– nm 325 nm * * Fluorescence

Electron and Energy Transfer Endtner, J. M.; Effenberger, F.; Hartschuh, A.; Port, H. J. Am. Chem. Soc. 2000, 122, 3037– nm 350 nm 385 nm ** *  High Absorbance at 690 nm R = –(CH) 2 Me

Electronic Motion Lukas, A. S.; Bushard, P. J.; Wasielewski, M. R. J. Am. Chem. Soc. 2001, 123, 2440–2441 Input 2 Input 1 Output 480 nm High Absorbance at 720 nm 420 nm

Mechanism D* D A1* A1 A2 A3 120 ps 420 nm 490 fs 480 nm 5 ps High Absorbance at 720 nm Energy D A1A2 A3

An All-Optical AND Gate 480 nm 420 nm High Absorbance at 720 nm The absorbance is high only if both inputs are applied! 420 nm Off On Absorbance Low High 480 nm Off On Off On I10011I10011 O0001O0001 I20101I20101 AND

Chemical Inputs: A Summary Optical OutputChemical Input Optical Output Chemical Input 1Chemical Input 2 Chemical Input 1 Chemical Input 2 Optical Output

Optical Inputs: A Summary Optical Input 1 Optical Input 2 Chemical Input Optical Input Optical Output Optical Input Optical Output Optical Input 2 Optical Input 1 Optical Input 2 Optical Output Optical Input 1

Chemo- and All-Optical Switches Chemo-Optical Solution Protonation/Deprotonation Complexation/Decomplexation Nuclear Motion Diffusion Limited Byproduct Accumulation Chemical Sensing All-Optical Solution Polymer Matrices cis/trans Isomerization Ring Opening/Closing Electron/Energy Transfer Nuclear Motion Electronic Motion Photodegradation Optical Memories Optical Switches Medium Operating Principles Mechanism Speeds Stability Reversibility Possible Applications     