D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent.

Slides:



Advertisements
Similar presentations
PROBING THE BOGOLIUBOV EXCITATION SPECTRUM OF A POLARITON SUPERFLUID BY HETERODYNE FOUR-WAVE-MIXING SPECTROSCOPY Verena Kohnle, Yoan Leger, Maxime Richard,
Advertisements

High-resolution spectroscopy with a femtosecond laser frequency comb Vladislav Gerginov 1, Scott Diddams 2, Albrecht Bartels 2, Carol E. Tanner 1 and Leo.
The feasibility of Microwave- to-Optical Photon Efficient Conversion By Omar Alshehri Waterloo, ON Fall 2014
What makes a cavity good? Dan Brooks April 29, 2008 Physics 250.
Ashida lab Toyota yusuke
Nanophotonics Class 6 Microcavities. Optical Microcavities Vahala, Nature 424, 839 (2003) Microcavity characteristics: Quality factor Q, mode volume V.
Limits and Interfaces in Sciences / Kumboldt-Kolleg São Paulo-SP,
In Search of the “Absolute” Optical Phase
Biosensing with silicon chip based microcavities
Students: Young-Shin Park Scott Lacey Mark Kuzyk Laser Cooling of an Optomechanical Microresonator Hailin Wang Oregon Center for Optics, University of.
IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Optical cavity with high quality factor Q Photonic crystals course final presentation Karin Söderström.
Rydberg excitation laser locking for spatial distribution measurement Graham Lochead 24/01/11.
Precision Spectroscopy of the 9s and 8p levels of Francium. by Seth Aubin Graduate Students: Eduardo Gomez Kerim Gulyuz Jerry Sell Professors: Luis A.
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
CAVITY QUANTUM ELECTRODYNAMICS IN PHOTONIC CRYSTAL STRUCTURES Photonic Crystal Doctoral Course PO-014 Summer Semester 2009 Konstantinos G. Lagoudakis.
First year talk Mark Zentile
Pump-Probe Spectroscopy Chelsey Dorow Physics 211a.

Guillaume TAREL, PhC Course, QD EMISSION 1 Control of spontaneous emission of QD using photonic crystals.
A strontium detective story James Millen Strontium detective – Group meeting 19/10/09 Ions‽
Single atom lasing of a dressed flux qubit
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Ashida lab M1 toyota M. Cai, O.Painter, K. J. Vahala, Opt. Lett. 25, 1430 (2000). Fiber-coupled microsphere laser.
ITOH Lab. Hiroaki SAWADA
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
P. Bertet Quantum Transport Group, Kavli Institute for Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands A. ter Haar A. Lupascu J. Plantenberg.
T ECHNISCHE U NIVERSITÄT KAISERSLAUTERN K. Bergmann Lecture 6 Lecture course - Riga, fall 2013 Coherent light-matter interaction: Optically driven adiabatic.
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 16 (3/31/2014) Slide Introduction to Quantum Optics.
The QED Vacuum Magnetic Birefringence (BMV) Experiment
Determination of fundamental constants using laser cooled molecular ions.
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Meet the transmon and his friends
1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)
__–––– Sensitivity Scaling of Dual Frequency Combs Ian Coddington, Esther Baumann, Fabrizio Giorgetta, William Swann, Nate Newbury NIST, Boulder, CO
Ultrafast carrier dynamics Optical Pump - THz Probe Ultrafast carrier dynamics in Br + -bombarded semiconductors investigated by Optical Pump - THz Probe.
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Haifeng Huang and Kevin K. Lehmann
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
Quantum Optics II – Cozumel, Dec. 6-9, 2004
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Optically detected magnetic resonance of silicon vacancies in SiC Kyle Miller, John Colton, Samuel Carter (Naval Research Lab) Brigham Young University.
Chapter 11. Laser Oscillation : Power and Frequency
Summary Kramers-Kronig Relation (KK relation)
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances: Joel A. Greenberg and Daniel. J. Gauthier Duke University 5/22/2009.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Quantum Theory of the Coherently Pumped Micromaser István Németh and János Bergou University of West Hungary Department of Physics CEWQO 2008 Belgrade,
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
|| Quantum Systems for Information Technology FS2016 Quantum feedback control Moritz Businger & Max Melchner
Microwave Spectroscopy of the Autoionizing 5d 3/2 n l States of Barium Edward Shuman Tom Gallagher.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Tunable excitons in gated graphene systems
Detuned Twin-Signal-Recycling
Mingyun Li & Kevin Lehmann Department of Chemistry and Physics
Quantum Phase Transition of Light: A Renormalization Group Study
Implementation of All-Optical Toffoli gate in Λ- systems
Light propagation in topological two-level structures
Wavelength tunability in whispering gallery mode resonators
Superfluorescence in an Ultracold Thermal Vapor
New Results on Photothermal Effect: Size and Coating Effect
Coupled atom-cavity system
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Spectroscopy of ultracold bosons by periodic lattice modulations
Marco Polo, Daniel Felinto and Sandra Vianna Departamento de Física
Kenji Kamide* and Tetsuo Ogawa
Efficient optical pumping and quantum storage in a Nd:YVO nanocavity
Presentation transcript:

D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent Spectroscopy of Rare- Earth-Ion Doped Whispering Gallery Mode Resonators David McAuslan – QIP-REIDS2011

 Whispering Gallery Modes (WGMs).  Strong Coupling Regime of Cavity QED.  Experiments. ◦ Atom-Cavity Coupling. ◦ Coherence Time. ◦ Population Lifetime. ◦ Spectral Hole Lifetime. ◦ Optical Bistability/Normal-Mode Splitting. David McAuslan – QIP-REIDS2011 Outline

Whispering Gallery Modes  Electric field confined to equator.  High quality factor.  Small mode volume.  Ideal for strong coupling cavity QED. [1] S. Arnold et al., Opt. Lett. 28 (2003). [1] David McAuslan – QIP-REIDS2011

Whispering Gallery Modes MicrodiskMicrotoroidMicrosphereCrystalline r~ μm. Q=10 7. r~ μm. Q=10 8. r~ μm. Q=10 9. r~ μm. Q= [2] [3] [1] T. J. Kippenberg, PhD. Thesis (2004). [2] A. Schliesser et al., Nature Physics 4 (2008). [3] Y. Park et al., Nano Lett. 6 (2006). [4] J. Hofer et al., PRA 82 (2010). [1] [2] [3] [4] David McAuslan – QIP-REIDS2011

 κ – cavity decay rate:  γ – atomic population decay rate:  γ h – atomic phase decay rate:  g – coupling between atoms and cavity: Strong Coupling Regime David McAuslan – QIP-REIDS2011

 Critical atom number:  Saturation photon number:  N 0 <1, n 0 <1.  “Good cavity” strong coupling regime: g > κ, γ, γ h.  “Bad cavity” strong coupling regime: κ > g >> γ, γ h. Strong Coupling Regime David McAuslan – QIP-REIDS2011

 Reversible State Transfer  Single Atom Detection Why Strong Coupling? D. L. McAuslan et al., Physical Review A 80, (2009) David McAuslan – QIP-REIDS2011

 Measure the properties of a Pr 3+ :Y 2 SiO 5 resonator. ◦ Atom-cavity coupling. ◦ Coherence time. ◦ Population lifetime. ◦ Spectral hole lifetime.  Calculate cavity QED parameters to determine viability of strong-coupling regime. Aim of Experiments David McAuslan – QIP-REIDS2011

 Resonator: ◦ 0.05% Pr 3+ :Y 2 SiO 5. ◦ r = 1.95mm. ◦ Q = 2 x  Sample: ◦ 0.02% Pr 3+ :Y 2 SiO 5. ◦ 5x5x5mm cube. Experimental Setup D. L. McAuslan et al., ArXiv: (2011) David McAuslan – QIP-REIDS2011 LO Probe David McAuslan – QIP-REIDS2011 D. L. McAuslan et al., ArXiv: (2011)

π = 0.32 μ s for P in = 700 μ W π Pulse Length D. L. McAuslan et al., ArXiv: (2011) David McAuslan – QIP-REIDS2011 D. L. McAuslan et al., ArXiv: (2011)

 Rabi frequency:  Atom-Cavity Coupling:  Compare to g calculated from the theoretical mode volume (V = 5.40 x m 3 for r = 1.95mm): Atom-Cavity Coupling D. L. McAuslan et al., ArXiv: (2011) David McAuslan – QIP-REIDS2011 D. L. McAuslan et al., ArXiv: (2011)

e -2 τ /T 2  Through Resonator  Coupled into Resonator Coherence Time D. L. McAuslan et al., ArXiv: (2011) David McAuslan – QIP-REIDS2011 D. L. McAuslan et al., ArXiv: (2011)

e -2 τ /T 2  Through Resonator  Coupled into Resonator Coherence Time D. L. McAuslan et al., ArXiv: (2011) David McAuslan – QIP-REIDS2011 T 2 = 30.8 μ sT 2 = 21.0 μ s David McAuslan – QIP-REIDS2011 D. L. McAuslan et al., ArXiv: (2011)

 Through Resonator  Coupled into Resonator e - Τ /T 1 Population Lifetime D. L. McAuslan et al., ArXiv: (2011) David McAuslan – QIP-REIDS2011 D. L. McAuslan et al., ArXiv: (2011)

 Through Resonator  Coupled into Resonator e - Τ /T 1 Population Lifetime D. L. McAuslan et al., ArXiv: (2011) David McAuslan – QIP-REIDS2011 T 1 = 205 μ sT 1 = 187 μ s David McAuslan – QIP-REIDS2011 D. L. McAuslan et al., ArXiv: (2011)

Spectral Hole Lifetime D. L. McAuslan et al., ArXiv: (2011) David McAuslan – QIP-REIDS2011

 Optical bistability and normal-mode splitting studied by Ichimura and Goto in a Pr 3+ :Y 2 SiO 5 Fabry-Perot resonator [1].  Theory modified for a WGM resonator.  Fitting to experimental data gives: ◦ g = 2 π x 2.2 kHz. Optical Bistability 800 μ W400 μ W 200 μ W100 μ W 80 μ W40 μ W Sweep [1] K. Ichimura and H. Goto, PRA 74 (2006) David McAuslan – QIP-REIDS2011

 This resonator: ◦ κ = 2 π x 138 MHz. ◦ γ = 2 π x kHz. ◦ γ h = 2 π x 2.34 kHz. ◦ g = 2 π x 1.73 kHz. ◦ N 0 = 2.15 x 10 5, n 0 =  Need: ◦ Smaller resonators. ◦ Higher Q factors. ◦ Different materials. Cavity QED Parameters David McAuslan – QIP-REIDS2011

Smaller V  Single point diamond turning. ◦ Crystalline resonators with R = 40 μm. ◦ Possible to reduce V by 3 orders of magnitude. [1] [1] I. S. Grudinin et al., Opt. Commun. 265 (2006) David McAuslan – QIP-REIDS2011

Higher Q  We have measured Q = 2 x 10 8 in Y 2 SiO 5 resonators.  Q = 3 x in CaF 2 [1].  Bulk losses in Y 2 SiO 5 measured using Fabry-Perot cavity [2]. ◦ α ≤ 7 x cm -1. ◦ Max Q ~ 3 x  At least 2 orders of magnitude improvement possible.  Bulk losses should be lower in IR. [1] A. A. Savchenkov et al., Opt Exp. 15 (2007) [2] H. Goto et al., Opt. Exp. 18 (2010) David McAuslan – QIP-REIDS2011

 N 0 <1 for different materials. Materials David McAuslan – QIP-REIDS2011

 Performed an investigation into strong coupling cavity QED with rare-earth-ion doped WGM resonators.  Direct measurement of cavity QED parameters of a Pr 3+ :Y 2 SiO 5 WGM resonator. ◦ g = 2 π x 1.73 kHz. ◦ γ = 2 π x kHz. ◦ γ h = 2 π x 2.34 kHz.  Observed optical bistability and normal-mode splitting in resonator.  Achieving the strong coupling regime of cavity QED is feasible based on existing resonator technology. Conclusions David McAuslan – QIP-REIDS2011