Multicomponent Multiphase LB Models Multi- Component Multiphase Miscible Fluids/Diffusion (No Interaction) Immiscible Fluids Single Component Multiphase.

Slides:



Advertisements
Similar presentations
FLUID MECHANICS FOR CHEMICAL ENGINEERS. Introduction Fluid mechanics, a special branch of general mechanics, describes the laws of liquid and gas motion.
Advertisements

Quiz – An organic liquid enters a in. ID horizontal steel tube, 3.5 ft long, at a rate of 5000 lb/hr. You are given that the specific.
Density, ρ= mass/unitvolume –Slugs/ft3;kg/m3
Lecture 15: Capillary motion
Cht. IV The Equation of Motion Prof. Alison Bridger 10/2011.
DRILLING ENGINEERING Well Control.
Lecture 19. Physicochemical: Surface Energies
PETE 310 Lectures # 32 to 34 Cubic Equations of State …Last Lectures.
II. Properties of Fluids. Contents 1. Definition of Fluids 2. Continuum Hypothesis 3. Density and Compressibility 4. Viscosity 5. Surface Tension 6. Vaporization.
Fluid Mechanics –For Civil Engineers is all about SMU Storing– Moving– Using ( Incompressible fluids - water) To design and manage these systems we need.
Chapter 2: Fluid Properties Solid-Liquid-Gas Specific Weight Compressible vs. Non-Compressible Solid under shear vs Liquid under Shear Viscosity Newtonian.
0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is.
Chapter 9 Solids and Fluids (c).
Die Casting Basics Die is closed. Metal is drawn in to tool (plunger). Tool injects metal into cavity. Cavity continues to fill. (fractions of a second)
Lectures 11-12: Gravity waves Linear equations Plane waves on deep water Waves at an interface Waves on shallower water.
Chapter:1 Fluids & Properties
Chapter 1 – Fluid Properties
Lecture 7 Flow of ideal liquid Viscosity Diffusion Surface Tension.
© Fluent Inc. 8/10/2015G1 Fluids Review TRN Heat Transfer.
MEL140 Properties of pure substances. Pure substance A pure substance has the same chemical composition throughout. Are the following confined in a fixed.
Topic 17: States of Matter Table of Contents Topic 17 Topic 17 Click box to view movie clip.
1 Gases Chapter Properties of Gases Expand to completely fill their container Take the Shape of their container Low Density –much less than solid.
SURVIVAL MODE Quiz 3 –
Molecular Transport Equations. Outline 1.Molecular Transport Equations 2.Viscosity of Fluids 3.Fluid Flow.
Progressive Energy Dynamics: Key to Low Standoff Cleaning The Science of Cleaning PED.
Surface Adhesion (Adsorption) in LBM. Key Papers Martys, N. and H. Chen, 1996, PRE 53, Raiskinmäki, P., A. Koponen, J. Merikoski, and J. Timonen,
A Hybrid Particle-Mesh Method for Viscous, Incompressible, Multiphase Flows Jie LIU, Seiichi KOSHIZUKA Yoshiaki OKA The University of Tokyo,
Smoothed Particle Hydrodynamics (SPH) Fluid dynamics The fluid is represented by a particle system Some particle properties are determined by taking an.
Chapter 10; Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
PETE 310 Lecture # 5 Phase Behavior – Pure Substances.
CE 230-Engineering Fluid Mechanics Week 1 Introduction.
Chapter 10 Fluids. Units of Chapter 10 Phases of Matter Density Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal’s Principle Measurement.
Basic Fluid Dynamics.
Chapter 4 Forces and Newton’s Laws of Motion Why things move the way the do.
Chapter 13 States of Matter Read pgs Kinetic Molecular Theory The kinetic molecular theory describes the behavior of gases in terms of particles.
The Simplest Phase Equilibrium Examples and Some Simple Estimating Rules Chapter 3.
Chapter 8 Real Gases.
Fluid Resistance.
GASES.
Chapter 5 – Gases. In Chapter 5 we will explore the relationship between several properties of gases: Pressure: Pascals (Pa) Volume: m 3 or liters Amount:
Lecture Outline Chapter 9 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Viscosity. Fluid Resistance  An object moving through or on a fluid meets resistance.  Force causes the fluid to move.  The velocity is proportional.
Capillary Rise.
The Boltzmann Distribution allows Calculation of Molecular Speeds Mathematically the Boltzmann Distribution says that the probability of being in a particular.
Effective Stress Soil is a multi phase system
Lattice Boltzmann Simulation of Fluid Flows M.J. Pattison & S. Banerjee MetaHeuristics LLC Santa Barbara, CA
EE Audio Signals and Systems Wave Basics Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
Midterm-Review GLY Basic Fluid Dynamics Momentum p = mv F = dp/dt = m dv/dt.
GASES. Gases  The physical state of gases is defined by several physical properties  Volume  Temperature  Amount (commonly expressed as number of.
Second Semester Review
Intermolecular Forces and Liquids and Solids Chapter 11 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Momentum Equation and its Applications
Modelling immiscible displacement in porous rocks with LBM models
The Science of Cleaning Green
Basic Fluid Dynamics.
KINETIC MOLECULAR THEORY
Effects of Air Pressure and Wettability on Drop Impact on Dry Surfaces Taehun Lee, Department of Mechanical Engineering, City University of New York,
Gas Properties & PVT Tests
Lecture 49 More on Phase Transition, binary system
Diffuse interface theory
. . . Surface Tension Air F F Liquid As a molecule moves through
Pressure.
Building an LBM Model The following is a mixture of MATLAB and C. Care must be taken, because array indexing begins at 1 in MATLAB and at 0 in C.
Mechanical Separation
Lattice Boltzmann Simulation of Water Transport in Gas Diffusion Layers of PEMFCs with Different Inlet Conditions Seung Hun Lee1, Jin Hyun Nam2,*, Hyung.
II. Theory for numerical analysis of multi-phase flow (Practice)
Properties of Liquids, Phase Changes, & Vapor Pressure
Lecture Fluids.
Chapter 9 Analysis of a Differential Fluid Element in Laminar Flow
Presentation transcript:

Multicomponent Multiphase LB Models Multi- Component Multiphase Miscible Fluids/Diffusion (No Interaction) Immiscible Fluids Single Component Multiphase Single Phase (No Interaction) Number of Components Interaction Strength Nature of Interaction Attractive Repulsive LowHigh Inherent Parallelism

Adding a component/substance Often just need another loop: for( subs=0; subs<NUM_FLUID_COMPONENTS; subs++) for( j=0; j<LY; j++) for( i=0; i<LX; i++) { … }

One composite u for f eq calculation (Eqn. 95 in Sukop and Thorne; note error in 2006 printing) // Compute density, Eq. (97), and the sums used (below) // in the velocities. for( subs=0; subs<NUM_FLUID_COMPONENTS; subs++) for( j=0; j<LY; j++) for( i=0; i<LX; i++) { rhoij[subs] = 0.; u_xij[subs] = 0.; u_yij[subs] = 0.; if( !is_solid_node[j][i]) { for( a=0; a<9; a++) { rhoij[subs] += ftemp_ij[a]; u_xij[subs] += ex[a]*ftemp_ij[a]; u_yij[subs] += ey[a]*ftemp_ij[a]; } } }

One composite u for f eq calculation // Compute the composite velocity and individual velocities. for( j=0; j<LY; j++) { for( i=0; i<LX; i++) { if( !is_solid_node[j][i]) { ux_sum = u_xij[0]/tau0 + u_xij[1]/tau1; uy_sum = u_yij[0]/tau0 + u_yij[1]/tau1; if( rhoij[0] + rhoij[1] != 0) { // Composite velocity, Eq. (95). uprime_x = ( ux_sum) / ( rhoij[0]/tau0 + rhoij[1]/tau1); uprime_y = ( uy_sum) / ( rhoij[0]/tau0 + rhoij[1]/tau1); } else { uprime_x = 0.; uprime_y = 0.; } // Individual velocities, Eq. (96), x-direction. if( rhoij[0] != 0) { u_xij[0] = u_xij[0] / rhoij[0]; } else { u_xij[0] = 0.; } if( rhoij[1] != 0) { u_xij[1] = u_xij[1] / rhoij[1]; } else { u_xij[1] = 0.; } // Individual velocities, Eq. (96), y-direction. if( rhoij[0] != 0) { u_yij[0] = u_yij[0] / rhoij[0]; } else { u_yij[0] = 0.; } if( rhoij[1] != 0) { u_yij[1] = u_yij[1] / rhoij[1]; } else { u_yij[1] = 0.; } }

Interparticle Forces // Compute fluid-fluid interaction force, equation (98), // (assuming periodic domain). // // We begin by computing psi even though in this implementation // it is the same as rho. A different function of rho could // be substituted here. for( subs=0; subs<NUM_FLUID_COMPONENTS; subs++) for( j=0; j<LY; j++) for( i=0; i<LX; i++) if( !is_solid_node[j][i]) { psi[subs][j][i] = rho[subs][j][i]; }

Interparticle Forces // Compute the summations in Eq. (98). for( subs=0; subs<NUM_FLUID_COMPONENTS; subs++) { for( j=0; j<LY; j++) { jp = ( j<LY-1)?( j+1):( 0 ); jn = ( j>0 )?( j-1):( LY-1); for( i=0; i<LX; i++) { ip = ( i<LX-1)?( i+1):( 0 ); in = ( i>0 )?( i-1):( LX-1); Fxtemp = 0.; Fytemp = 0.;

Interparticle Forces if( !is_solid_node[j][i]) { if( !is_solid_node[j ][ip]) // neighbor 1 { Fxtemp = Fxtemp + WM*ex[1]*psi[subs][j ][ip]; Fytemp = Fytemp + WM*ey[1]*psi[subs][j ][ip]; } if( !is_solid_node[jp][i ]) // neighbor 2 { Fxtemp = Fxtemp + WM*ex[2]*psi[subs][jp][i ]; Fytemp = Fytemp + WM*ey[2]*psi[subs][jp][i ]; } if( !is_solid_node[j ][in]) // neighbor 3 { Fxtemp = Fxtemp + WM*ex[3]*psi[subs][j ][in]; Fytemp = Fytemp + WM*ey[3]*psi[subs][j ][in]; } if( !is_solid_node[jn][i ]) // neighbor 4 { Fxtemp = Fxtemp + WM*ex[4]*psi[subs][jn][i ]; Fytemp = Fytemp + WM*ey[4]*psi[subs][jn][i ]; } if( !is_solid_node[jp][ip]) // neighbor 5 { Fxtemp = Fxtemp + WD*ex[5]*psi[subs][jp][ip]; Fytemp = Fytemp + WD*ey[5]*psi[subs][jp][ip]; } if( !is_solid_node[jp][in]) // neighbor 6 { Fxtemp = Fxtemp + WD*ex[6]*psi[subs][jp][in]; Fytemp = Fytemp + WD*ey[6]*psi[subs][jp][in]; } if( !is_solid_node[jn][in]) // neighbor 7 { Fxtemp = Fxtemp + WD*ex[7]*psi[subs][jn][in]; Fytemp = Fytemp + WD*ey[7]*psi[subs][jn][in]; } if( !is_solid_node[jn][ip]) // neighbor 8 { Fxtemp = Fxtemp + WD*ex[8]*psi[subs][jn][ip]; Fytemp = Fytemp + WD*ey[8]*psi[subs][jn][ip]; } } /* if( !is_solid_node[j][i]) */

Interparticle Forces Fx[subs][j][i] = Fxtemp; Fy[subs][j][i] = Fytemp; } /* for( i=0; i<LX; i++) */ } /* for( j=0; j<LY; j++) */ } /* for( subs=0; subs<NUM_FLUID_COMPONENTS; subs++) */ // Compute the final interaction forces of Eq. (98) using // the summations computed above. for( j=0; j<LY; j++) { for( i=0; i<LX; i++) { if( !is_solid_node[j][i]) { Fxtemp = Fx[1][j][i]; Fx[1][j][i] = -G*psi[1][j][i]*Fx[0][j][i]; Fx[0][j][i] = -G*psi[0][j][i]*Fxtemp; Fytemp = Fy[1][j][i]; Fy[1][j][i] = -G*psi[1][j][i]*Fy[0][j][i]; Fy[0][j][i] = -G*psi[0][j][i]*Fytemp; }

Complementary Densities 6,000 ts Domain 5X100 Periodic boundary

Complementary Densities 2,500 ts Domain 100X100 Periodic boundary

Computing big U (aka ueq) #define BIG_U_X( u_, rho_) \ (u_) \ + lattice->param.tau[subs] \ * lattice->force[subs][n].force[0]/(rho_) \ + lattice->param.tau[subs] \ * lattice->force[subs][n].sforce[0]/(rho_) \ + lattice->param.tau[subs] \ * lattice->param.gforce[subs][0] #define BIG_U_Y( u_, rho_) \ (u_) \ + lattice->param.tau[subs] \ * lattice->force[subs][n].force[1]/(rho_) \ + lattice->param.tau[subs] \ * lattice->force[subs][n].sforce[1]/(rho_) \ + lattice->param.tau[subs] \ * lattice->param.gforce[subs][1]

Multicomponent Multiphase LBM Separate distributions Repulsive interaction

Phase (fluid-fluid) separation

Laplace Law Interfacial tension (as opposed to surface tension between a liquid and its own vapor)

Metastability

MCMP LBM with Surfaces Like SCMP except each fluid phase can interact with surface Two surface interaction parameters, one fluid/fluid Young’s Equation:

MCMP SForce for( j=0; j<LY; j++) { jp = ( j<LY-1)?( j+1):( 0 ); jn = ( j>0 )?( j-1):( LY-1); for( i=0; i<LX; i++) { ip = ( i<LX-1)?( i+1):( 0 ); in = ( i>0 )?( i-1):( LX-1); if( !is_solid_node[j][i]) { sum_x=0.; sum_y=0.; if( is_solid_node[j ][ip]) // neighbor 1 { sum_x = sum_x + WM*ex[1]; sum_y = sum_y + WM*ey[1];} if( is_solid_node[jp][i ]) // neighbor 2 { sum_x = sum_x + WM*ex[2]; sum_y = sum_y + WM*ey[2];} if( is_solid_node[j ][in]) // neighbor 3 { sum_x = sum_x + WM*ex[3]; sum_y = sum_y + WM*ey[3];} if( is_solid_node[jn][i ]) // neighbor 4 { sum_x = sum_x + WM*ex[4]; sum_y = sum_y + WM*ey[4];} if( is_solid_node[jp][ip]) // neighbor 5 { sum_x = sum_x + WD*ex[5]; sum_y = sum_y + WD*ey[5];} if( is_solid_node[jp][in]) // neighbor 6 { sum_x = sum_x + WD*ex[6]; sum_y = sum_y + WD*ey[6];} if( is_solid_node[jn][in]) // neighbor 7 { sum_x = sum_x + WD*ex[7]; sum_y = sum_y + WD*ey[7];} if( is_solid_node[jn][ip]) // neighbor 8 { sum_x = sum_x + WD*ex[8]; sum_y = sum_y + WD*ey[8];} for( subs=0; subs<NUM_FLUID_COMPONENTS; subs++) { sforce_x[subs][j][i] = -Gads[subs]*sum_x; sforce_y[subs][j][i] = -Gads[subs]*sum_y; }

MCMP surface forces A surrounded by itself: –F A = G  A  B A surrounded by solid: –F ads A = G ads A  A F ads A = F A leads to: Since complimentary density is low, G ads should be small relative to G

90-degree contact angle Multicomponent fluids interacting with a surface when G = 0.1 and G ads 1 = G ads 2 =

45° Contact Angle Multicomponent fluids interacting with a surface when G = 0.1, G ads 1 = -0.02, and G ads 2 = Wetting fluid must have lowest G ads

2 Phase Flow Analytical Solution g q2q2 q1q1 u2u2 u1u1 h H-h Y Z 

Co- and Counter-current flows

Countercurrent air and water Pressure gradient in air phase Pressure gradient in water phase

Density and Viscosity Contrasts Large density and viscosity contrasts are a major challenge of LBM research. McCracken and Abraham (2005): pressure in standard multicomponent LB models is p = (  1 +  2 )c s 2, where c s is the speed of sound Significance is that for total pressure to be constant, the sum of the densities of the 2 species must be constant Not the case in real gasses, where differing molecular weights lead to constant pressures despite different densities