Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.

Slides:



Advertisements
Similar presentations
Proposal for a new design of LumiCal R. Ingbir, P. Ruzicka, V. Vrba October 07 Malá Skála.
Advertisements

GUINEA-PIG: A tool for beam-beam effect study C. Rimbault, LAL Orsay Daresbury, April 2006.
TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
P hysics background for luminosity calorimeter at ILC I. Božović-Jelisavčić 1, V. Borka 1, W. Lohmann 2, H. Nowak 2 1 INN VINČA, Belgrade 2 DESY, Hamburg.
Reconstruction of IP Beam Parameters at the ILC from Beamstrahlung Glen White SLAC/QMUL May 4 th 2005.
Backgrounds and Forward Region Backgrounds and Forward Region FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.
Beamdiagnostics by Beamstrahlung Analysis C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Krakow2006.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting.
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
BeamCal Simulations with Mokka Madalina Stanescu-Bellu West University Timisoara, Romania Desy, Zeuthen 30 Jun 2009 – FCAL Meeting.
Analysis of Beamstrahlung Pairs ECFA Workshop Vienna, November 14-17, 2005 Christian Grah.
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Beam Monitoring from Beam Strahlung work by summer students  Gunnar Klämke (U Jena, 01)  Marko Ternick (TU Cottbus, 02)  Magdalena Luz (HU Berlin, 03)
Instrumentation of the very forward region of the TESLA detector – summary of the Workshop on Forward Calorimetry and Luminosity Measurement, Zeuthen,
Diamond Detector Developments at DESY and Measurements on homoepitaxial sCVD Diamond Christian Grah - DESY Zeuthen 2 nd NoRHDia Workshop at GSI Thursday,
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
Simulation of Beam-Beam Background at CLIC André Sailer (CERN-PH-LCD, HU Berlin) LCWS2010: BDS+MDI Joint Session 29 March, 2010, Beijing 1.
September, 19 FCAL Worlshop in Tel Aviv W. Lohmann, DESY Physics Requirements Input From Theory Lessons from LEP LumiCal Simulations BeamCal.
Septembre SLAC BeamCal W. Lohmann, DESY BeamCal: ensures hermeticity of the detector to smallest polar angles -important for searches Serves as.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
ILC-ECFA Workshop Valencia November 2006 Four-fermion processes as a background in the ILC luminosity calorimeter for the FCAL Collaboration I. Božović-Jelisavčić,
Beam Monitoring from Beam Strahlung new work by summer students  Magdalena Luz (HU)  Regina Kwee (HU) Achim Stahl DESY Zeuthen 10.Oct.2003 LumiCal BeamCal.
Fast Beam Diagnostics at the ILC Using the Beam Calorimeter Christian Grah, Desy FCAL Workshop February Cracow.
TESLA R&D: Forward Region Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UC London Dubna.
HEP Tel Aviv University LumiCal (pads design) Simulation Ronen Ingbir FCAL Simulation meeting, Zeuthen Tel Aviv University HEP experimental Group Collaboration.
Pad design present understanding Tel Aviv University HEP Experimental Group Ronen Ingbir Collaboration High precision design Tel-Aviv Sep.05 1.
February, INP PAN FCAL Workshop in Cracow W. Lohmann, DESY The BCD (Baseline Configuration Document) The next calendar dates Where we are with FCAL.
1 Some results from LumiCal Monte Carlo Studies Michał Karbowiak, B. Pawlik, L. Zawiejski Michał Karbowiak (*), B. Pawlik, L. Zawiejski Institute of Nuclear.
1 Calorimeters of the Very Forward Region Iftach Sadeh Tel Aviv University DESY Collaboration High precision design March 5 th 2008.
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Lumical R&D progress report Ronen Ingbir.
16 February 2009CLIC Physics & Detectors Konrad Elsener 1... some issues regarding the forward region... (“picking up” from Lucie Linssen, 29 Sept 2008)
The Luminosity Calorimeter Iftach Sadeh Tel Aviv University Desy ( On behalf of the FCAL collaboration ) June 11 th 2008.
1 LumiCal Optimization Simulations Iftach Sadeh Tel Aviv University Collaboration High precision design May 6 th 2008.
The Very Forward Region of the ILC Detectors Ch. Grah FCAL Collaboration TILC 2008, Sendai 04/03/2008.
Systematic limitations to luminosity determination in the LumiCal acceptance from beam-beam effects C. Rimbault, LAL Orsay LCWS06, Bangalore, 9-13 March.
October DESY PRC Instrumentation of the Very Forward Region of a Linear Collider Detector Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell.
Fast and Precise Luminosity Measurement at the ILC Ch.Grah LCWS 2006 Bangalore.
Beamdiagnostics using BeamCal C.Grah FCAL Workshop, Paris,
Mokka simulation studies on the Very Forward Detector components at CLIC and ILC Eliza TEODORESCU (IFIN-HH) FCAL Collaboration Meeting Tel Aviv, October.
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
LumiCal background and systematics at CLIC energy I. Smiljanić, Vinča Institute of Nuclear Sciences.
Performance Study of Pair-monitor 2009/06/30 Yutaro Sato Tohoku Univ.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
November, 7, 2006 ECFA06, Valencia, Spain LumiCal & BeamCal readout and DAQ for the Very Forward Region Wojciech Wierba Institute of Nuclear Physics Polish.
Octobre 2007LAL Orsay Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY.
FCAL Krakow meeting, 6. May LumiCal concept including the tracker R. Ingbir, P.Růžička, V. Vrba.
1 Impact de l’effet faisceau-faisceau sur la precision de la mesure de la luminosité à l’ILC Cécile Rimbault, LAL Orsay SOCLE,19-20 Novembre 2007, Clermont-Ferrand.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
Initial proposal for the design of the luminosity calorimeter at a 3TeV CLIC Iftach Sadeh Tel Aviv University March 6th 2009
Diamond – Tungsten Calorimeter LCAL-group : K. Afanasiev, V. Drugakov, E. Kouznetsova, W. Lohmann, A. Stahl Workshop on Forward Calorimetry and Luminosity.
Doses and bunch by bunch fluctuations in BeamCal at the ILC Eliza Teodorescu FCAL Collaboration Meeting June 29-30, 2009, DESY-Zeuthen, Germany.
BDIR/MDI Summary ECFA Final Plenary
BeamCal Simulation for CLIC
Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell. Univ. Cracow,
Layout of Detectors for CLIC
Summary of the FCAL Workshop Cracow, February 12-13
The very forward region Tel-Aviv meeting summary
BDIR/MDI Summary ECFA Final Plenary
The Optimized Sensor Segmentation for the Very Forward Calorimeter
Reconstruction of IP Beam Parameters at the ILC from Beamstrahlung
Wolfgang Lohmann DESY (Zeuthen)
Beamdiagnostics by Beamstrahlung Pair Analysis
Study of e+ e- background due to beamstrahlung for different ILC parameter sets Stephan Gronenborn.
The Very Forward Region of the ILC Detectors
CLIC luminosity monitoring/re-tuning using beamstrahlung ?
Presentation transcript:

Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah

9/19/2005Ch.Grah: Beamdiagnostics2 Outline  Very Forward Calorimetry of LDC,  LumiCal  PhotoCal  BeamCal  Fast luminosity monitoring  Beam diagnostics from beamstrahlung  analyzing pairs and photons  20 mrad crossing angle  Summary & outlook

9/19/2005Ch.Grah: Beamdiagnostics3 Very Forward Region LumiCal: 26 < θ < 82 mrad BeamCal: 4 < q < 28 mrad PhotoCal: 100 < q < 400 μrad

9/19/2005Ch.Grah: Beamdiagnostics4 Very Forward Calorimeters  LumiCal:  Precise measurement of the luminosity by using bhabha events (very high mechanical precision needed).  Extend coverage of the detector system.  Photocal  beam diagnostics from beamstrahlung photons  BeamCal:  detection of electrons/photons at low angle.  shielding of Inner Detector.  beam diagnostics from beamstrahlung electrons/positron pairs.

9/19/2005Ch.Grah: Beamdiagnostics5 BeamCal: Beam Diagnostics and Fast Luminosity Monitoring  e + e - per BX => 10 – 20 TeV  ~ 10 MGy per year  “fast” => O(μs)  Direct photons for  < 400  rad (PhotoCal) e + e - pairs from beamstrahlung are deflected into the BeamCal e+e+ e-e- Deposited energy from pairs at z = +365 (no B-field, TESLA parameters)

9/19/2005Ch.Grah: Beamdiagnostics6 Distribution of pairs B z =4T B z =4T/2mrad

9/19/2005Ch.Grah: Beamdiagnostics7 BeamCal: W-Diamond Sandwich Length = 30 X 0 (3.5mm W +.5mm diamond sensor) ~ channels ~1.5/2 cm < R < ~10(+2) cm Space for electronics

9/19/2005Ch.Grah: Beamdiagnostics8 Fast Luminosity Monitoring A fast estimation of the luminosity is needed, e.g. number of pairs/total energy.  This will be included into the fast feedback system. Luminosity development during first 600 bunches of a bunch-train. L total = L(1-600) + L(550600)*( )/50 G.White QMUL/SLAC RHUL & Snowmass presentation position and angle scan

9/19/2005Ch.Grah: Beamdiagnostics9 L Improvement by including Pair Signal position scan position scan & angle scan 350 GeV 500 GeV Up to 14.8 % improvement on the overall luminosity. A fast luminosity signal is a must have for the ILC. G.White

9/19/2005Ch.Grah: Beamdiagnostics10 Beamstrahlung Pairs  Observables (examples):  total energy  first radial moment  thrust value  angular spread  E(ring ≥ 4) / Etot  E / N  left/right, up/down, forward/backward asymmetries detector: realistic segmentation, ideal resolution bunch by bunch resolution

9/19/2005Ch.Grah: Beamdiagnostics11 Aim: Reconstruction of Beam Parameters Sigma x Sigma y Sigma z Sigma x' Sigma y' x offset y offset x' offset y' offset x-waist shift y-waist shift Bunch rotation N particles/bunch Banana shape … … Luminosity What do you want to know?

9/19/2005Ch.Grah: Beamdiagnostics12 Analysis Concept Observables Δ BeamPar Taylor Matrix nom = + * Beam Parameters determine collision creation of beamstr. creation of e + e - pairsguinea-pig(D.Schulte) Observables characterize energy distributions in detectorsFORTRAN analysis program (A.Stahl) 1 st order Taylor- Exp. Solve by matrix inversion (Moore-Penrose Inverse)

9/19/2005Ch.Grah: Beamdiagnostics13 beam parameter i [au] observable j [au] parametrization (polynomial) Slopes 1 point = 1 bunch crossing by guinea-pig slope at nom. value  taylor coefficient i,j

9/19/2005Ch.Grah: Beamdiagnostics14 Test with non-nominal bunches: e - e + nom. bunch size x: 575nm 575nm 553nm bunch size y: 5nm 7nm 5nm bunch size z: 290 μ m 320 μ m 300 μ mAnalysis

9/19/2005Ch.Grah: Beamdiagnostics15 σxσx σyσy σzσz Δσ x Δσ y Δσ z 0.3 %0.4 %3.4 %9.5 %1.4 %0.8 % 0.3 % 0.4 %3.5 % 11 % 1.5 % 0.9 % 0.9 % 1.0 % 11 % 24 % 5.7 % 24 % 1.6 % 1.9 % 1.8 % 1.1 % 16 % 27 % 3.2 % 2.1 % Multi Parameter Analysis

9/19/2005Ch.Grah: Beamdiagnostics16 2nd Order Calculations G.White Fast feedback system group (QMUL) is studying higher order dependencies. Computation of Taylor Matrix only to second order, due to cpu limitations: 2nd order requires 7 days on 100 CPU cluster. This effort aims for an offline analysis/fitting routine.

9/19/2005Ch.Grah: Beamdiagnostics17 Photons from Beamstrahlung Andrei Rybin (Protvino)  Report on analysis done by Andrei Rybin (Protvino)  Beam parameters under investigation:  beam size σ x, σ y, σ z  beam offset x,y  waist shift x,y  Observables  E γ (left – right) along x  E γ (up – down) along y  E γ (forward – backward) along z Every beam parameter analyzed separately, all others were fixed to nominal value.

9/19/2005Ch.Grah: Beamdiagnostics18 Interlude: Photon Distribution and Selection Photon selection: |angle x| > 0.2 mrad |angle y| > 0.1 mrad E tot = TeV In use: Multi layer perceptron feed-forward network. 200 Epochs for learning hybrid linear BFGS learning method

9/19/2005Ch.Grah: Beamdiagnostics19 Vertical Beam Waist Variation nominell beam parameters vert. waist shift > 0 vert. waist shift < 0

9/19/2005Ch.Grah: Beamdiagnostics20 Results of Analysis Parameternom.inphot.pairs  σ x 553nm  σ y 5.0nm  σ z 300μm  beam offset x0nm  beam offset y0nm  vertical waist shift360μm1424

9/19/2005Ch.Grah: Beamdiagnostics21 Moving to 20mrad crossing angle Simplification of DID field map (B.Parker & A.Seryi)

9/19/2005Ch.Grah: Beamdiagnostics22 20mrad crossing angle  20mrad crossing angle and serpentine B-field implemented. |B| = 4T, serpentine field, 20mrad

9/19/2005Ch.Grah: Beamdiagnostics23 Geometry for 20mrad mirrored

9/19/2005Ch.Grah: Beamdiagnostics24 Beamdiagnostics for 20mrad  Simulate collision/beamstrahlung with Guineapig using head-on case.  Use FORTRAN code by A.Stahl - extended by  Boosting the generated pairs according to crossing angle.  Calculate impact position at BeamCal front face by parameterized movement in constant b-field.  Use new geometries (headon, 2mrad, 20mrad).  Used old set of observables (space for improvements).

9/19/2005Ch.Grah: Beamdiagnostics25 Single Parameter Analysis for 20mrad Headon (old geom)20mrad BeamParUnitnomMPIFITMPIFIT σx (ave)nm σx (diff)nm σy (ave)nm σy (diff)nm σz (ave)μmμm σz (diff)μmμm N per Bunch (ave) N per Bunch (diff)

9/19/2005Ch.Grah: Beamdiagnostics26 Summary  A fast luminosity signal could significantly increase luminosity.  Analyzing beamstrahlung grants access to many beam parameters.  Investigating the possibility of measuring the distribution of pairs from beamstrahlung with BeamCal. Promising results also for 20mrad case, but further work needed for final result.  Single and Multiparameter analysis is feasible.  Photon distribution at lowest angles (~100 μrad) with PhotoCal has potential. The more uncorrelated observables the better our parameter reconstruction will work.

9/19/2005Ch.Grah: Beamdiagnostics27 Outlook  Optimization of observables.  Comparison of the simple b-field approximation to using the b-field map.  Include a realistic detector response.  Look at realistic beam simulation and non linear bunch effects.