Exon 2 Exon 3 STOP K8β intron Figure S1 …acacaagacagcugcagcag GUAUAGACGGGAAACAGGUGUCUAUCUUGGCCGGCUGGUUACUCAAAUGGGAACAAUGGCGCCACCUUGCUGUCUUUGUAG gcauuagaagaaaaggaugc…

Slides:



Advertisements
Similar presentations
Chapter 17~ From Gene to Protein
Advertisements

LECTURE 17: RNA TRANSCRIPTION, PROCESSING, TURNOVER Levels of specific messenger RNAs can differ in different types of cells and at different times in.
Protein Targetting Prokaryotes vs. Eukaryotes Mutations
Unit #3 Schedule: Last Class: – Sanger Sequencing – Central Dogma Overview – Mutation Today: – Homework 5 – StudyNotes 8a Due – Transcription, RNA Processing,
Codes for the production of a repressor protein A regulator gene is a prokaryotic gene that An operator is a DNA segment that controls transcription by.
 ribose  Adenine  Uracil  Adenine  Single.
Transcription: Synthesizing RNA from DNA
Chapter 6 Gene Prediction: Finding Genes in the Human Genome.
Gene Structure and Function
In-Text Art, Ch. 9, p In-Text Art, Ch. 3, p. 37.
Transcription Transcription is the synthesis of mRNA from a section of DNA. Transcription of a gene starts from a region of DNA known as the promoter.
Biology 1060 Chapter 17 From Gene to Protein. Genetic Information Important: Fig Describe how genes control phenotype –E.g., explain dwarfism in.
RNA Structure and Transcription Mrs. MacWilliams Academic Biology.
Initiating translation
Protein Synthesis 12-3.
RNA and Protein Synthesis
Halloween pets?. Student Assessment of Learning Gains (SALG) website.
1 The Interrupted Gene. Ex Biochem c3-interrupted gene Introduction Figure 3.1.
Figure 1S. BSR homology. Exhaustive pairwise alignment using neighbour-joining phylogeny analysis by Clone Manager7 software shows the high homology of.
What is the job of p53? What does a cell need to build p53? Or any other protein?
Review of Protein Synthesis. Fig TRANSCRIPTION TRANSLATION DNA mRNA Ribosome Polypeptide (a) Bacterial cell Nuclear envelope TRANSCRIPTION RNA PROCESSING.
Protein Synthesis. Transcription DNA  mRNA Occurs in the nucleus Translation mRNA  tRNA  AA Occurs at the ribosome.
Supplemental Figure 1. The wxr3 mutant exhibits decreased expression of CYCB1;1, SCR and SHR compared with the control. A and B, Expression of ProCYCB1;1:GUS.
Fig. S1 Mass spectra analysis of XXT4 reaction products demonstrating xylosyltransferase activity towards cellohexaose substrate. Predominant peaks represent.
Supplementary Figure 2A. A. ZMYM6-variant missing Exon 2 C. ZMYM6-variant missing Exon 4 B. ZMYM6-variant missing Exon 5 D. ZMYM6-variant missing Exons.
GenePolypeptide Gene  Polypeptide Transcription 1.RNAP binds to promoter 2.Separates DNA strands 3.Transcribes the DNA (adds RNA nucleotides in a 5'-3'
Fig b6 Template strand RNA primer Okazaki fragment Overall direction of replication.
Chapter 10 Opener. Figure 10.1 Metabolic Diseases and Enzymes.
Fill in AP paper and then make a chart Enzyme Role In what process? Helicase DNA polymerase Topoisomerase Primase Ligase Nuclease Telomerase RNA polymerase.
RNA, transcription & translation Unit 1 – Human Cells.
Central Dogma How all cells express genetic information.
Supp Fig. 1. Protein numberScores (>28=p
The role of Methyl-CpG Binding Protein 2 in Rett Syndrome Jessica Connor
WT#3#5#7#9#11#14#15#20#25#30 35S::JAZ13 Root length ratio * * * * * * * * * * Figure S2. Overexpression of native (untagged)
Protein Synthesis “From code into Flesh & Blood”.
CFE Higher Biology DNA and the Genome Transcription.
Chapter 11 Review. Explain the difference between each of the following 1. Operator, promoter -Operator: DNA segment where an inhibitor protein binds.
Genetic Code and Interrupted Gene Chapter 4. Genetic Code and Interrupted Gene Aala A. Abulfaraj.
Figure 6: BTK splice variants in B cell precursor leukemia
MLANA/MART1 and SILV/PMEL17/GP100 Are Transcriptionally Regulated by MITF in Melanocytes and Melanoma  Jinyan Du, Arlo J. Miller, Hans R. Widlund, Martin.
Lecture 8 A toolbox for mechanistic biologists (continued)
Which of the following would be the corresponding amino acid sequence that would be translated as a protein product of the following segment of DNA? A.
CENTRAL DOGMA OF BIOLOGY
Transcription.
Supplementary figure 3 a b M 1 2 Probe: Unc5b 7 kb
Human Cells Gene Expression
Chapter 10 How Proteins are Made.
RNA and Protein Synthesis
RNA and Protein Synthesis
Protein Synthesis Genetics.
Transcription & Translation.
Figure 2 Functional mechanisms of ASOs
Consequences of T‐DNA insertion on SWP expression in swp mutant.
Identification of a Regulated Pathway for Nuclear Pre-mRNA Turnover
Chapter 4 The Interrupted Gene.
Gene Sizes Vary Strachan p146 DYSTROPHIN.
Chapter 17 From gene to protein.
Central Dogma Central Dogma categorized by: DNA Replication Transcription Translation From that, we find the flow of.
(Transcription & Translation)
Figure 17.1 Figure 17.1 How does a single faulty gene result in the dramatic appearance of an albino deer?
Volume 37, Issue 6, Pages (March 2010)
RNA and Protein Synthesis
Gene Sizes Vary Strachan p146 DYSTROPHIN.
Transcription/ Translation
From gene to protein.
Volume 15, Issue 5, Pages (May 2016)
Volume 18, Issue 9, Pages (September 2010)
Beyond Homing: Competition between Intron Endonucleases Confers a Selective Advantage on Flanking Genetic Markers  Heidi Goodrich-Blair, David A Shub 
Mutation of the Ca2+ Channel β Subunit Gene Cchb4 Is Associated with Ataxia and Seizures in the Lethargic (lh) Mouse  Daniel L Burgess, Julie M Jones,
Volume 18, Issue 4, Pages (May 2005)
Presentation transcript:

Exon 2 Exon 3 STOP K8β intron Figure S1 …acacaagacagcugcagcag GUAUAGACGGGAAACAGGUGUCUAUCUUGGCCGGCUGGUUACUCAAAUGGGAACAAUGGCGCCACCUUGCUGUCUUUGUAG gcauuagaagaaaaggaugc… 5’ss 3’ss oVM241 oVM242 oVM243 oVM244 oVM245 oVM246

K8β 1234 K8  - -++ORF57 RBM CNCNRNA CNCN GAPDH U6 -- -- K8 Figure S2

Figure S3 A B RBM15 SRSF3 ORF β-tubulin ORF57 DNA (ng) HEK293 - full - cleaved VA (h) BCBL RBM15 SRSF3 β-tubulin ORF57 - full - cleaved SRSF3/RBM15 (%)

Sample 1 Peptide Mass Peptide SequenceSequence Header EVSFQSTGESEWK MSGGWELELNGTEAK ITVTFNINNSIPPTFDGEEEPSQG QK AFVDFLSDEIKEER VEEQEPELTSTPNFVVEVIK >gi| |ref|NP_ | complement component 1, q subcomponent binding protein precursor [Homo sapiens]gi|730772|sp|Q |C1QBP_HUMAN RecName: Full=Complement component 1 Q subcomponent-binding protein, mitochondrial; AltName: Full=Glycoprot IYVGNLPTDVR GSPHYFSPFRPY EKDLEDLFYK HGLVPFAFVR >gi| |ref|NP_ | splicing factor, arginine/serine-rich 9 [Homo sapiens]gi| |ref|XP_ | PREDICTED: splicing factor, arginine/serine-rich 9 isoform 2 [Pan troglodytes]gi| |sp|Q |SFRS9_HUMAN RecName: Full=Splic LTPEEEEILNK ISSLLEEQFQQGK IIDVVYNASNNELVR QWYESHYALPLGR >gi| |ref|NP_ | ribosomal protein S8 [Homo sapiens]gi| |ref|NP_ | ribosomal protein S8 [Mus musculus]gi| |ref|NP_ | ribosomal protein S8 [Rattus norvegicus]gi| |ref|NP_ | ribosomal protein S ELLTLDEKDPR LFEGNALLR KQVVNIPSFIVR QVVNIPSFIVR >gi| |ref|NP_ | ribosomal protein S9 [Homo sapiens]gi| |ref|NP_ | ribosomal protein S9-like [Mus musculus]gi| |ref|NP_ | ribosomal protein S9 [Rattus norvegicus]gi| |ref|NP_ | ribosomal VRVELSNGEK AFGYYGPLR NPPGFAFVEFEDPR NPPGFAFVEFEDPRDAADAVR >gi| |ref|NP_ | splicing factor, arginine/serine-rich 3 [Homo sapiens]gi| |ref|NP_ | splicing factor, arginine/serine-rich 3 (SRp20) [Mus musculus]gi| |ref|NP_ | splicing factor, arginine/serine-rich 3 [Bo AQQNNVEHKVETFSGVYK AIIIFVPVPQLK TLTAVHDAILEDLVFPSEIVGK >gi| |ref|NP_ | ribosomal protein S7 [Homo sapiens]gi| |ref|NP_ | ribosomal protein S7 [Mus musculus]gi| |ref|NP_ | ribosomal protein S7 [Felis catus]gi| |ref|NP_ | ribosomal protein S FSGSGSGTDFTLK DSTYSMSSTLTLTKDEYER >gi| |pdb|1FLR|L Chain L, Fab Fragment VWLDPNETNEIANANSR >gi| |ref|NP_ | ribosomal protein L19 [Homo sapiens]gi| |ref|NP_ | ribosomal protein L19 [Rattus norvegicus]gi| |ref|NP_ | ribosomal protein L19 [Bos taurus]gi| |ref|NP_ | ribosomal pro TAVVVGTITDDVR >gi| |ref|NP_ | ribosomal protein L18 [Homo sapiens]gi| |ref|XP_ | PREDICTED: similar to ribosomal protein L18 [Macaca mulatta]gi|548749|sp|Q |RL18_HUMAN RecName: Full=60S ribosomal protein L18gi| |sp|Q GLDVDSLVIEHIQVNK >gi| |gb|AAH | Ribosomal protein L17 [Homo sapiens] VLEQLTGQTPVFSK >gi|495126|emb|CAA | ribosomal protein L11 [Homo sapiens] Sample EVSFQSTGESEWK MSGGWELELNGTEAK AFVDFLSDEIKEER VEEQEPELTSTPNFVVEVIK >gi| |ref|NP_ | complement component 1, q subcomponent binding protein precursor [Homo sapiens]gi|730772|sp|Q |C1QBP_HUMAN RecName: Full=Complement component 1 Q subcomponent-binding protein, mitochondrial; AltName: Full=Glycoprot LTPEEEEILNK ISSLLEEQFQQGK IIDVVYNASNNELVR QWYESHYALPLGR >gi| |ref|NP_ | ribosomal protein S8 [Homo sapiens]gi| |ref|NP_ | ribosomal protein S8 [Mus musculus]gi| |ref|NP_ | ribosomal protein S8 [Rattus norvegicus]gi| |ref|NP_ | ribosomal protein S FSGSGSGTDFTLK QNGVLNSWTDQDSK DSTYSMSSTLTLTKDEYER >gi| |pdb|1FLR|L Chain L, Fab Fragment FEDPRDAEDAIYGR IYVGNLPTDVR GSPHYFSPFRPY >gi| |ref|NP_ | splicing factor, arginine/serine-rich 9 [Homo sapiens]gi| |ref|XP_ | PREDICTED: splicing factor, arginine/serine-rich 9 isoform 2 [Pan troglodytes]gi| |sp|Q |SFRS9_HUMAN RecName: Full=Splic VWLDPNETNEIANANSR >gi| |ref|NP_ | ribosomal protein L19 [Homo sapiens]gi| |ref|NP_ | ribosomal protein L19 [Rattus norvegicus]gi| |ref|NP_ | ribosomal protein L19 [Bos taurus]gi| |ref|NP_ | ribosomal pro QVVNIPSFIVR >gi| |ref|NP_ | ribosomal protein S9 [Homo sapiens]gi| |ref|NP_ | ribosomal protein S9-like [Mus musculus]gi| |ref|NP_ | ribosomal protein S9 [Rattus norvegicus]gi| |ref|NP_ | ribosomal TAVVVGTITDDVR >gi| |ref|NP_ | ribosomal protein L18 [Homo sapiens]gi| |ref|XP_ | PREDICTED: similar to ribosomal protein L18 [Macaca mulatta]gi|548749|sp|Q |RL18_HUMAN RecName: Full=60S ribosomal protein L18gi| |sp|Q GLDVDSLVIEHIQVNK >gi| |gb|AAH | Ribosomal protein L17 [Homo sapiens] NPPGFAFVEFEDPRDAADAVR >gi| |ref|NP_ | splicing factor, arginine/serine-rich 3 [Homo sapiens]gi| |ref|NP_ | splicing factor, arginine/serine-rich 3 (SRp20) [Mus musculus]gi| |ref|NP_ | splicing factor, arginine/serine-rich 3 [Bos taurus] Supplementary Table S1: Peptides and corresponding proteins associated with KSHV ORF57 in THE absence (Fig 2A, sample 1) or presence (Fig 2A, sample 2) of ectopically expressed RBM15. The peptides and proteins were identified with LC-MS/MS.

OligoSequencePosition KSHV oVM241 5'-Biotin-rArCrArCrArArGrArCrArGrCrUrGrCrArGrCrArGrGrUrArUrAdTdT-3' oVM242 5'-Biotin-rGrUrArUrArGrArCrGrGrGrArArArCrArGrGrUrGrUrCrUrArUdTdT-3' oVM243 5'-Biotin-rUrCrUrArUrCrUrUrGrGrCrCrGrGrCrUrGrGrUrUrArCrUrCrAdTdT-3' oVM244 5'-Biotin-rArCrUrCrArArArUrGrGrGrArArCrArArUrGrGrCrGrCrCrArCdTdT-3' oVM245 5'-Biotin-rGrCrCrArCrCrUrUrGrCrUrGrUrCrUrUrUrGrUrArGrGrCrArUdTdT-3' oVM246 5'-Biotin-rUrGrUrArGrGrCrArUrUrArGrArArGrArArArArGrGrArUrGrCdTdT-3' HPV16 oJR9 (wt) 5′-Biotin-rCrCrArGrArCrArCrCrGrGrArArArCrCrCrCrUrGrCrCrArCrArCrCrArC-3′ oJR10 (mt) 5′-Biotin-rCrCrArGrArUrGrUrCrGrGrArArArCrCrUrCrUrGrCrUrGrUrGrCrUrGrU-3′ SUPPLEMENTARY TABLE S2. Biotinylated RNA oligos from the KSHV K8β intron region and the HPV16 ESE used in RNA pulldowns. Underlined are point mutations.

Supplementary Table S3: Primers used for RT-PCR and Northern Blotting. T7, T7 promoter; U1bs, U1 binding site OligoSequenceTargetPosition oST15'-TAATACGACTCACTATAGGG /ACCACCAAGAGGACCACACATTTC-3' T7/KSHV K8 (exon 1) oST35'-GTACTCACCCC/CACACAAA GTCTGGCATGGTTCTCCC-3' U1bs/ KSHV K8 (exon 3) oVM2135'-CCCGGGATCCACCGGTCGCCACCA-3'BamHI/GFP oVM1625'-GGTTCAGGGGGAGGTGTGG-3'GFP oZMZ2465’-CAATGGGACGCGTGCAAAGC-3’BPV-1 (Pr1) oZMZ2495’-TAATACGACTCACTATAGGGA/ CAGTATTTGTGCTTGTCCTT-3’ T7/BPV-1 (Pr2) oXFL0495’-TAATACGACTCACTATAGG /TTTAATGCTTTGCTTGATGC-3’ T7/BPV-1 (Pr3) oXFL0465’-CATATCCCCATCTTCTATGTGC-3’BPV-1 (Pr4) oSB235’-TATTAGGCAGCACTTGGC-3’HPV16 (Pr1) oXHW415’-CAACATATTCATCCGTGCTTACAAC-3’HPV16 (Pr2) oST2855’-TGGCTTTGGTGCTATGGACT-3’HPV16 (Pr3) oYL95’-GAAGTAGATATGGCAGCACA-3’HPV16 (Pr4) oZMZ2695'-GTCATCAATGGAAATCCCATCACC-3'GAPDH oZMZ2705'-TGAGTCCTTCCACGATACCAAA-3'GAPDH oST32CGGACGACGGCACAACCAKSHV K8 (exon 3) oST197AAAATATGGAACGCTTCACGAU