GAS CHROMATOGRAPHY (GC). GAS CHROMATOGRAPHY Sample is injected (using a syringe) into the injection port. Sample vaporizes and is forced into the column.

Slides:



Advertisements
Similar presentations
Introduction to Chromatography
Advertisements

Gas Chromatography Introduction 1.) Gas Chromatography
Gas Chromatography 427 PHC.
Lecture 8b Gas Chromatography.
Gas Chromatography.
Gas Chromatography & Gas-Liquid Chromatography
GAS CHROMATOGRAPHY.
Experiment 2 DISTILLATION AND GAS CHROMATOGRAPHY OF ALKANES.
Mobile phase is a gas! Stationary phase could be anything but a gas
GC & LC.
CHM 312 Fall 2008 CHROMATOGRAPHY. THIN LAYER CHROMATOGRAPHY (TLC)
The geometry of capillary columns is fairly simple, consisting of length, internal diameter, and stationary phase thickness. Nevertheless, there are endless.
1 Chapter 24 GC Gas Chromatography. 2 GC Mechanism of separation is primarily volatility. Difference in boiling point, vapor pressure etc. What controls.
Figure Figure 2 Chem 334 Expt. #3
Intro to Chromatographic Separations Chap 26. Originally based on separation and identification by color Originally based on separation and identification.
Introduction to Gas Chromatography Written by Bette Kreuz Produced by Ruth Dusenbery University of Michigan-Dearborn 2000.
Gas chromatography is used in many research labs, industrial labs (quality control), forensic (arson and drug analysis, toxicology, etc.), environmental.
Gas Chromatography And Mass Spectrometry
Gas Liquid Chromatography
Chapter 22 GC & LC Gas Chromatography -1 1.Schematic diagram.
CHAPTER 29 Supercritical Fluid Chromatography The mobile phase is a supercritical fluid (a fluid above its critical T and critical pressure) Supercritical.
Types of Chromatography Liquid chromatography versus gas chromatography? Applications? Volatile  GC Non-volatile  LC.
Effect of Packing Particle Size on Plate Height. Resolution between 2 adjacent peaks.
LECTURE 4: CHROMATOGRAPHY Content: - Chromatographic separation - classifying analytical separations; column chromatography, planar chromatography - gas.
By, Blessy Babu. What is Gas Chromatography?  Gas spectroscopy is a technique used to separate volatile components in a mixture.  It is particularly.
Chapter 6 - Chromatography
Chemical Ideas 7.6 Chromatography. The general principle. Use – to separate and identify components of mixtures. Several different types - paper, thin.
ANALYTICAL CHEMISTRY CHEM 3811 CHAPTER 22 DR. AUGUSTINE OFORI AGYEMAN Assistant professor of chemistry Department of natural sciences Clayton state university.
Chromatography Separates components in mixture: Based on - polarity
Chromatography Chapter 6.
Magnet Analytical Chemistry Unit 4
1.1 General description - Sample dissolved in and transported by a mobile phase - Some components in sample interact more strongly with stationary phase.
In gas-liquid chromatography (g.l.c.) a long tube contains the chromatography material. The tube is usually coiled so that it takes up less space.
LECTURE 9 CHROMATOGRAPHIC SEPARATIONS The “stuff” you do before you analyze a “complex” sample.
Chapter 21 Principles of Chromatography. Chromatography is the most powerful tool for separating & measuring the components of a complex mixture. Quantitative.
CHROMATOGRAPHY. The general name given to methods by which two or more compounds in a mixture are physically separated by distributing themselves between.
PAS-Intro1 Dated 24th Aug Copyright © Siemens AG 1999 All Rights Reserved Siemens Advanced Engineering Pte Ltd Process Analytical Services Division.
Separation Science Differences in IMFs can be used to separate chemical substances for further analysis. Differences in IMFs can be used to separate chemical.
PLOT Columns P orous L ayer O pen T ubular Porous layer open tubular (PLOT) columns are defined as capillary columns where the inner surface is coated.
Experiment 2 DISTILLATION AND GAS CHROMATOGRAPHY OF ALKANES.
GC Advantages 1. Very Large N (Very Long Columns) 2. No Packing Material (A=0) 3. Simple Mobile Phase (Compressed Gas) 4. Universal Detectors (FID) 5.
Experiment 2 DISTILLATION AND GAS CHROMATOGRAPHY OF ALKANES.
Gas Chromatography Experiment. Gas Chromatography - Gas Chromatography (GC) is a common technique used to separate and identify volatile organic compounds.
Intensive General Chemistry Chemical separations II Isabelle Vu Trieu
COLUMN CHROMATOGRAPHY (CC). TLC - Optimizing for column chromatography Optimum: 0.2 < R f < 0.5.
By: Arafath and Nick. What is it  Chromatography is a technique that is used to separate the substances present in a mixture.  It is widely used to.
Analytical Separations
Experiment 2 DISTILLATION AND GAS CHROMATOGRAPHY OF ALKANES.
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC). HIGH PERFORMANCE LIQUID CHROMATOGRAPHY High Performance Liquid Chromatography (HPLC) is one of the most.
1 Gas Chromatography Lecture Liquid Stationary Phases In general, the polarity of the stationary phase should match that of the sample constituents.
Introduction to Chromatography. Introduction Chromatography permit the scientist to separate closely related components of complex mixtures. In all chromatographic.
HPLC.
Ch 21 – Principles of Chromatography and Mass Spectrometry Ch 22 – Gas and Liquid Chromatography.
Chem. 133 – 5/3 Lecture. Announcements Lab – Term Project Progress Report Due Today – Last Assignments: Term Project Poster and Peer Review Grading (Friday,
Organic Analysis Basic concepts. Elements and Atoms Fundamental building block of all substances is the element. Fundamental building block of all substances.
Gas Chromatography Oleh : Rohayati, S.Pd SMK Negeri 13 Bandung.
CHROMATOGRAPHY  A laboratory technique in which the components of a sample are separated based on how they distribute between two chemical or physical.
Experiments in Analytical Chemistry
1.1 General description - Sample dissolved in and transported by a mobile phase - Some components in sample interact more strongly with stationary phase.
High Performance Liquid Chromatography. What is HPLC ? It is a separation technique that involves: Injection of small volume of liquid sample Into a tube.
Organic Chemistry Lab 315 Fall, 2016.
Overview Determining Identity Quantitative Analysis
An Introduction to Chromatographic Separations
Satish Pradhan Dnyanasadhana College, Thane (W)
BASICS OF SUPERCRITICAL FLUID CHROMATOGRAPHY
Chromatography Daheeya Alenazi.
Principle of separation of different components:
GAS CHROMATOGRAPHY.
High performance liquid chromatography (HPLC)
Presentation transcript:

GAS CHROMATOGRAPHY (GC)

GAS CHROMATOGRAPHY Sample is injected (using a syringe) into the injection port. Sample vaporizes and is forced into the column by the carrier gas ( = mobile phase which in GC is usually helium) Components of the sample mixture interact with the stationary phase so that different substances take different amounts of time to elute from the column. The separated components pass through a detector. Electronic signals, collected over time, are sent to the GC software, and a chromatogram is generated.

Compounds A and B interact with the stationary phase through intermolecular forces: (van der Waals or dipole-dipole forces, including hydrogen bonding). A interacts more strongly with the stationary liquid phase and is retained relative to B, which interacts weakly with the stationary phase. Thus B spends more time in the gas phase and advances more rapidly through the column and has a shorter retention time than A. Typically, components with similar polarity elute in order of volatility. Thus alkanes elute in order of increasing boiling points; lower boiling alkanes will have shorter retention times than higher boiling alkanes. GAS CHROMATOGRAPHY

GC - Alkane Standards Pentane Isooctane Gas Chromatograph of alkane standard mixture containing equimolar amounts of: n-hexane, 2,3-dimethylbutane, 3-methyl-pentane, n-heptane, 3-methylhexane, n-octane, 3-methylheptane, 2,2,4-trimethyl-pentane (= isooctane), all dissolved in pentane.

GC of Alkane Standards vs. distillation fraction #1 Standards Distillation Fraction #1

GC – Peak Areas and Resolution

GC – Isothermal vs Temperature Programming

GC – Example Chromatograms

Alltech Chromatography catalog, 550 GC – Packed vs. Capillary Columns

Experimental Organic Chemistry D. R. Palleros, Wiley, NY, 2000 GC – Stationary Phase

Alltech Chromatography catalog, 550

GC – Elution order vs Stationary Phase Alltech Chromatography catalog, 550

GC - Derivatization Why is chemical derivatization needed? GC is best for separation of volatile compounds which are thermally stable. Not always applicable for compounds of high molecular weight or containing polar functional groups. These groups are difficult to analyze by GC either because they are not sufficiently volatile, tail badly, are too strongly attracted to the stationary phase, thermally unstable or even decomposed. Chemical derivatization prior to analysis is generally done to: increase the volatility and decrease the polarity of compounds; reduce thermal degradation of samples by increasing their thermal stability; increase detector response improve separation and reduce tailing Derivatizing Reagents Common derivatization methods can be classified into 4 groups depending on the type of reaction applied: Silylation Acylation Alkylation Esterification

GC - Derivatization Derivatizing Reagents Common derivatization methods can be classified into 4 groups depending on the type of reaction applied: Silylation Acylation Alkylation Esterification

Alltech.com

Skoog and Leary: Principals of Instrumental Analysis, 4 th ed. Suanders, 1992 GC – Resolution and Efficiency

GC – Resolution vs Column Efficiency (N, H) van Deemter Equation H = A + B/u +(C s + C m )u H = L / N Skoog and Leary: Principals of Instrumental Analysis, 5 th ed. Suanders, 1998

CHROMATOGRAPHY Preparative vs Resolution vs Speed vs Expense