MINC meeting 2003 Getting your data into MINC and more Andrew L Janke.

Slides:



Advertisements
Similar presentations
National Alliance for Medical Image Computing Slicer3 plugins Common architecture for interactive and batch processing.
Advertisements

Creative Computing. \\ aims By the end of the session you will be able to: 1.Explain the difference between various image file formats 2.Load in and display.
Neuro-Imaging High Resolution Ex-Vivo MRI Ex-Vivo DTI of Brain Stem
NA-MIC National Alliance for Medical Image Computing Slicer3 Tutorial / Registration Library: Case 29 - DTI converting and aligning diffusion.
Initial Experience(s) Developing S4 Classes for Medical Imaging Data Brandon Whitcher, PhD GlaxoSmithKline Clinical Imaging Centre.
NA-MIC National Alliance for Medical Image Computing Slicer3 Tutorial / Registration Library: Case 03 - DTI aligning low-resolution diffusion.
STIR – 1 Digital Phantom Project
Computational Biology, Part 23 Biological Imaging II Robert F. Murphy Copyright  1996, 1999, All rights reserved.
CS & CS Multimedia Processing Lecture 2. Intensity Transformation and Spatial Filtering Spring 2009.
ARM-DSP Multicore Considerations CT Scan Example.
Quality Control of Diffusion Weighted Images
Coregistration and Normalisation By Lieke de Boer & Julie Guerin.
Grape Detection in Vineyards Ishay Levi Eran Brill.
Morphology – Chapter 10. Binary image processing Often it is advantageous to reduce an image from gray level (multiple bits/pixel) to binary (1 bit/pixel)
Realigning and Unwarping MfD
3D Skeletons Using Graphics Hardware Jonathan Bilodeau Chris Niski.
Digital Image Processing Chapter 4: Image Enhancement in the Frequency Domain.
FMRI: Biological Basis and Experiment Design Lecture 19: Data formats and data path DICOM DICOM servers Conversion between formats Slice-time correction.
CS 128/ES Lecture 5a1 Raster Formats (II). CS 128/ES Lecture 5a2 Spatial modeling in raster format  Basic entity is the cell  Region represented.
ADC Change with Pixel Shift Joshua Kim June 12, 2009.
Digital Image Processing Chapter 4: Image Enhancement in the Frequency Domain.
Tanmoy Mondal, Ashish Jain, and H. K. Sardana. Introdution the research advancement in the field of automatic detection of craniofacial structures has.
ECE 333 Renewable Energy Systems Lecture 13: Per Unit, Power Flow Prof. Tom Overbye Dept. of Electrical and Computer Engineering University of Illinois.
Introduction to Longitudinal Phase Space Tomography Duncan Scott.
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL Adaptive Weighted Deconvolution Model to Estimate the Cerebral Blood Flow Function in Dynamic Susceptibility.
Introduction to Image Processing Grass Sky Tree ? ? Review.
Chapter 2. Image Analysis. Image Analysis Domains Frequency Domain Spatial Domain.
University of Illinois at Urbana-ChampaignHDF 9/19/2000 McGrath 9/19/ Transition from HDF4 to HDF5: Issues Robert E. McGrath NCSA University of Illinois.
Ircon ® ScanIR ® 3 Linescanner How to work with Snapshots? Confidential Rev. A 07/2013.
Internet and Distributed Representation of Agent Based Model by- Manish Sharma.
An Introduction to MINC John G. Sled. What is MINC? A medical image file format based on NetCDF A core set tools and libraries for image processing A.
Designing Interface Components. Components Navigation components - the user uses these components to give instructions. Input – Components that are used.
MINC meeting 2003 A Short Tour of the MINC Toolset Steve Robbins.
The future of MINC Robert D. Vincent
FMRI Group Natasha Matthews, Ashley Parks, Destiny Miller, Ziad Safadi, Dana Tudorascu, Julia Sacher. Adviser: Mark Wheeler.
HP-PURDUE-CONFIDENTIAL Final Exam May 16th 2008 Slide No.1 Outline Motivations Analytical Model of Skew Effect and its Compensation in Banding and MTF.
Filtering and Enhancing Images. Major operations 1. Matching an image neighborhood with a pattern or mask 2. Convolution (FIR filtering)
EE663 Image Processing Dr. Samir H. Abdul-Jauwad Electrical Engineering Department King Fahd University of Petroleum & Minerals.
AdeptSight Image Processing Tools Lee Haney January 21, 2010.
Diffusion Use Case1 Diffusion in Brain IHE use case for Enhanced MR.
Perfusion MRI in GSK Study
Diffusion Tensor Imaging: The Nitty Gritty Brought to you by: Meenal and Erica November 2, 2010.
Vision Geza Kovacs Maslab Colorspaces RGB: red, green, and blue components HSV: hue, saturation, and value Your color-detection code will be more.
11/29/ Image Processing. 11/29/ Systems and Software Image file formats Image processing applications.
CSC508 Convolution Operators. CSC508 Convolution Arguably the most fundamental operation of computer vision It’s a neighborhood operator –Similar to the.
Clinical case studies Volumetric Measurements Visualization & Change Tracking Perfusion Analysis PET/CT Image Analysis Volumetric Analysis using 3D Slicer:
Surgical Planning Laboratory -1- Brigham and Women’s Hospital Converting DTI data into Nrrd file format Sonia Pujol, Ph.D. Gordon.
Functional Brain Signal Processing: EEG & fMRI Lesson 14
CS 376b Introduction to Computer Vision 02 / 11 / 2008 Instructor: Michael Eckmann.
BMI2 SS08 – Class 7 “functional MRI” Slide 1 Biomedical Imaging 2 Class 7 – Functional Magnetic Resonance Imaging (fMRI) Diffusion-Weighted Imaging (DWI)
Image processing Honza Černocký, ÚPGM. 1D signal 2.
Fourier Transform.
Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skill Heidi Johansen-Berg 1, Valeria Della-Maggiore 3, Steve Smith.
Vincent DeVito Computer Systems Lab The goal of my project is to take an image input, artificially blur it using a known blur kernel, then.
Machine Vision Edge Detection Techniques ENT 273 Lecture 6 Hema C.R.
Machine Vision ENT 273 Hema C.R. Binary Image Processing Lecture 3.
UNIT 3 – MODULE 5: Data Input & Editing. INTRODUCTION Putting data into a computer (called data coding) is a fundamental process for virtually all GIS.
[Stage 19: artefact] [Stage 20: extraction of the white matter mask for the hemispheres.
Basics of Perfusion Imaging With Dynamic Contrast MRI Larry Panych, PhD Brigham and Women’s Hospital.
Aa Scripting SPM analyses using aa Rhodri Cusack.
Image Enhancement in the Spatial Domain.
Linear transform [Stage 1~2]. 1. nuc_t1_native 2. skull_masking_native 3. stx_register 4. stx_tal_to_7 5. stx_tal_to_6 6. tal_t1 7. nuc_inorm_t1 8. skull_removal.
Transition from HDF4 to HDF5: Issues
f3d Format for Storage of 3D Grids
Chapter 4 C Program Control Part I
Image Deblurring and noise reduction in python
CS654: Digital Image Analysis
Ibrain Application CT Brain Perfusion
Morphological Operators
BASIC IMAGE PROCESSING OPERATIONS FOR COMPUTER VISION
Presentation transcript:

MINC meeting 2003 Getting your data into MINC and more Andrew L Janke

All very nice, but what about my data? 2 typical pathways –A: Convert original data (DICOM, GE, Siemens) –B: Convert from other format (Analyze, VoxBo, UNC, etc) A is preferable –Inconsistencies and shortfalls of some other formats. DICOM from Scanner Thiads asd Asd Asdaas asd asd ad Asd asd fa df af adsf f as f sf sdf Asdf sf asf asd fsad fasd Asdfasdf Asdf ANALYZE.hdr +.img MINC.mnc B A

rawtominc – the crux of conversion Essential information –Dimension sizes –Data type (byte, short, float, signed/unsigned) rawtominc out.mnc < analyze.img “good” information –Dimension step, start (-xstart, -ystep, etc) –Direction cosines

Image range conversion in MINC Image range vs Real range –“scaling” factor Real range can be arbitrary –1..0 – –etc

“automatic” conversion Typically perl scripts –Read the required values from pertinent image headers Can be difficult to write a general converter –Analyze AVW vs SPM vs AFNI –Incomplete or unavailable documentation –Too simplistic headers

New MINC tools - mincpik Create images from MINC files –Uses the convert tool from ImageMagick –Generate processing checking montages mincpik –transverse –slice 10 –image_range \ –lookup –hotmetal FA.mnc FA_transverse.jpg

New MINC tools - minchistory Print value of :history variable $ minchistory FA.reg.mnc --- History of B _DTI.B0.reg.clp.mnc --- [01] Thu Nov 21 14:28: >>> mincaverage -clobber \ /usr/people/steve/data/stroke/B027915/01_DTI/B _DTI.frame001.mnc \ /usr/people/steve/data/stroke/B027915/01_DTI/B _DTI.frame002.mnc \ /usr/people/steve/data/stroke/B027915/01_DTI/B _DTI.frame003.mnc \ /usr/people/steve/data/stroke/B027915/01_DTI/B _DTI.frame008.mnc \ /usr/people/steve/data/stroke/B027915/01_DTI/B _DTI.B0.mnc [02] Mon Nov 3 16:54: >>> mincresample -clobber -like \ /home/rotor/data/stroke/B027915/01_DTI/B _DTI.B0.mnc \ -transformation \ /home/rotor/data/stroke/B027915/xfms/B _DTI.midline-align.xfm \ /home/rotor/data/stroke/B027915/01_DTI/B _DTI.B0.mnc \ /home/rotor/data/stroke/B027915/reg/B _DTI.B0.reg.mnc [03] Mon Nov 10 23:50: >>> minccalc -clobber -outfile value \ /home/rotor/data/stroke/B027915/00_MDL/B _DTI.B0.reg.clp.mnc \ -outfile mask \ /home/rotor/data/stroke/B027915/00_MDL/B _DTI.B0.reg.vmsk.mnc \ -expression value = A[0]; mask = 1; if(value < e-05){ value = \ e-05; mask = 0; } else{ if(value > ){ value = \ ; mask = 0; }; }; value = \ (value e-05)/ ; \ /home/rotor/data/stroke/B027915/reg/B _DTI.B0.reg.mnc

mincmorph – morphological operators Masking an image from background –First find background threshold $ mincstats –biModal file.mnc BiModalT: $ mincmorph -byte -successive 'B[0.134]' file.mnc out.mnc

mincmorph – morphological operators Connected component labeling –Labeled by group size $ mincmorph -byte -successive 'B[0.134]G' file.mnc out.mnc

mincstats – group sizes $ mincstats –discrete_histogram –histogram out.hist out.mnc … $ cat out.hist # histogram for: foo.mnc # mask file: (null) # domain: # entropy: # bin centres counts …

mincmorph – morphological operators Keep largest group (in 3D) –Set remaining to background value (0) $ mincmorph -byte -successive 'B[0.134]GK[0:1]' file.mnc out.mnc

mincmorph – morphological operators Kernel files –The life and soul of mincmorph –Used for dilations, erosions, convolution, group connectivity –Default is a 3D 8- connectivity kernel Can use for edge detection MNI Morphology Kernel File % % 2D 8-connectivity ie: % % % % % % 0 - center voxel Kernel_Type = Normal_Kernel; Kernel = % x y z t v coeff % % % % ;

mincmorph – morphological operators Keep largest group (in 3D) –Set remaining to background value (0) mincmorph -byte -successive 'B[0.134]GK[0:1]R[./3x3_8-conn.kern]DDEE' file.mnc out.mnc

mincmorph – morphological operators Prewitt operator –multiples are applied at various angles MNI Morphology Kernel File % % 045 deg prewitt kernel: % % % % Kernel_Type = Normal_Kernel; Kernel = % x y z t v coeff % % % ;

mincblob – non-linear grid analysis Deformations generated by Animal

mincblob – non-linear grid analysis Deformation analysis –trace –determinant –local translation (arccos + norm)

New things on the way All these tools are available but not on the CD –need to gauge interest to specific tools for specific tasks Various C/L tools: –mincdti –vol_ts_reg - find_art - volperf –mincfft –mincsample Many link to external libraries –GSL, FFTW, Glib etc

mincdti + mincalc = Diffusion maps Raw diffusion time series –30 bvalue images

SVD, diagonalisation and maps of tensor eigen value 1,2,3 + chisq fit B0, ADC, ISO + FA CL, CP + CS

vol_ts_reg Uses minctracc to do simple time-series registration vol_ts_reg *.frame*.mnc –reg_ext ts_reg

volperf Calculate corrected and uncorrected perfusion indices –find aif with find_art

Perfusion Maps time intensity integral =cerebral blood volume (CBV) Inject contrast agent 0 mean transit time (MTT) deconvolution of this function gives cerebral blood flow (CBF) volperf –aif contralateral.aif *.frame.ts_reg.mnc outbase

DWI bolus delay corrected MTT and CBF 30 day T2 uncorrected MTT and CBF

mincfft – FFT and FFT -1 via FFTW Magnitude and Phase reco from FID mincfft -2D k-space.mnc –magnitude mag.mnc –phase phase.mnc

Acknowledgements Mark Griffin (code) What are your interests?