Signal Encoding, Spread Spectrum. Basic Encoding Techniques Digital data to analog signal Amplitude-shift keying (ASK) Amplitude difference of carrier.

Slides:



Advertisements
Similar presentations
Signal Encoding Techniques
Advertisements

IE 419/519 Wireless Networks Lecture Notes #6 Spread Spectrum.
Spread Spectrum Chapter 7.
Spread Spectrum Chapter 7. Spread Spectrum Input is fed into a channel encoder Produces analog signal with narrow bandwidth Signal is further modulated.
Chapter 5 – Signal Encoding and Modulation Techniques
Lecture 7: Spread Spectrum
Signal Encoding Techniques
Stallings, Wireless Communications & Networks, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Signal Encoding Techniques.
Computer Communication & Networks Lecture # 06 Physical Layer: Analog Transmission Nadeem Majeed Choudhary
1 Digital Data, Analog Signals (5.2) CSE 3213 Fall May 2015.
Lecture 8: Spread Spectrum
Cellular Communications
Spread Spectrum Input is fed into a channel encoder
William Stallings Data and Computer Communications 7th Edition
Data and Computer Communications Eighth Edition by William Stallings Chapter 9 – Spread Spectrum.
SPREAD SPECTRUM In spread spectrum (SS), we combine signals from different sources to fit into a larger bandwidth, but our goals are to prevent eavesdropping.
3. Encoding Techniques and Spread Spectrum
1 CMPT 371 Data Communications and Networking Spread Spectrum.
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 12 Feb. 24 nd, 2014.
Wireless Networks Spring 2005 Spread Spectrum. Wireless Networks Spring 2005 Spread Spectrum  Input is fed into a channel encoder oProduces analog signal.
Spread Spectrum Techniques
DIGITAL MODULATION.
Digital to analogue conversion. 1 DIGITAL-TO-ANALOG CONVERSION Digital-to-analog conversion is the process of changing one of the characteristics (A,
Chapter 6. Signal Encoding Techniques
Signal Encoding Techniques
ECEN 621, Prof. Xi Zhang ECEN “ Mobile Wireless Networking ” Course Materials: Papers, Reference Texts: Bertsekas/Gallager, Stuber, Stallings,
Signal Encoding Techniques Chapter 6. Reasons for Choosing Encoding Techniques  Digital data, digital signal Equipment less complex and expensive than.
Wireless Networks Instructor: Fatima Naseem Lecture # 03 Computer Engineering Department, University of Engineering and Technology, Taxila.
Lecture 8: Spread Spectrum
Data and Computer Communications Eighth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 9 – Spread Spectrum.
Antennas and Propagation From Stallings – Wireless Communications and Networks.
Spread Spectrum Spread-spectrum techniques are methods by which energy generated in a particular bandwidth is deliberately spread in the frequency domain,
From Stallings, modified and added1 Spread Spectrum Session 5 Nilesh Jha.
Signal Encoding Techniques Chapter 6. Reasons for Choosing Encoding Techniques Digital data, digital signal Equipment less complex and expensive than.
1 Chapter 7. Spread Spectrum Wen-Shyang Hwang KUAS EE.
Spread Spectrum Chapter 7. Spread Spectrum Form of communication Can be used to transmit analog or digital data using an ANALOG signal Idea: spread the.
Lecture 4 Spread Spectrum.
1 William Stallings Data and Computer Communications 7 th Edition Chapter 9 Spread Spectrum.
Stallings, Wireless Communications & Networks, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Multiple Access Techniques.
Code Division Multiple Access (CDMA) Transmission Technology
Data and Computer Communications Eighth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 9 – Spread Spectrum.
Data and Computer Communications Ninth Edition by William Stallings Chapter 9 – Spread Spectrum Data and Computer Communications, Ninth Edition by William.
1 Spread Spectrum Technology. 2 What is Spread Spectrum(SS) Spread Spectrum (SS) technology was first introduced by military as a way of sending secure.
Code Division Multiple Access (CDMA) Transmission Technology
Stallings, Wireless Communications & Networks, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Spread Spectrum Chapter.
TUNALIData Communication1 Spread Spectrum Chapter 9.
Wireless LAN Technology Chapter 13. Wireless LAN  Wireless LAN is one that make use of a wireless transmission medium.  Wireless LAN use infrared or.
DATA AND COMPUTER COMMUNICATIONS Eighth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 9 – Spread Spectrum.
Chap 6 Signal Encoding Technique
William Stallings Data and Computer Communications 7th Edition
CSE 5345 – Fundamentals of Wireless Networks
Lecture 7 CSMA and Spread Spectrum Dr. Ghalib A. Shah
CSE 5345 – Fundamentals of Wireless Networks
Digital modulation techniques
TLEN 5830-AWL Advanced Wireless Lab
Data and Computer Communications Eighth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 9 – Spread Spectrum.
Spread Spectrum Chapter 7.
CSE 5345 – Fundamentals of Wireless Networks
Signal Encoding Techniques
EEC4113 Data Communication & Multimedia System Chapter 3: Broadband Encoding by Muhazam Mustapha, October 2011.
Spread Spectrum A signal that occupies a bandwidth of B, is spread out to occupy a bandwidth of Bss All signals are spread to occupy the same bandwidth.
Wireless Mesh Networks
CSE 4215/5431: Mobile Communications Winter 2011
Wireless Networks Fall 2007
3. Encoding Techniques and Spread Spectrum
Spread Spectrum Chapter 7.
William Stallings Data and Computer Communications 7th Edition
William Stallings Data and Computer Communications 7th Edition
Spread Spectrum Analog or digital data Analog signal
Presentation transcript:

Signal Encoding, Spread Spectrum

Basic Encoding Techniques Digital data to analog signal Amplitude-shift keying (ASK) Amplitude difference of carrier frequency Frequency-shift keying (FSK) Frequency difference near carrier frequency Phase-shift keying (PSK) Phase of carrier signal shifted

Basic Encoding Techniques

Amplitude-Shift Keying One binary digit represented by presence of carrier, at constant amplitude Other binary digit represented by absence of carrier where the carrier signal is Acos(2πf c t)

Amplitude-Shift Keying Susceptible to sudden gain changes Inefficient modulation technique On voice-grade lines, used up to 1200 bps Used to transmit digital data over optical fiber

Binary Frequency-Shift Keying (BFSK) Two binary digits represented by two different frequencies near the carrier frequency where f 1 and f 2 are offset from carrier frequency f c by equal but opposite amounts

Binary Frequency-Shift Keying (BFSK) Less susceptible to error than ASK On voice-grade lines, used up to 1200bps Used for high-frequency (3 to 30 MHz) radio transmission Can be used at higher frequencies on LANs that use coaxial cable

Multiple Frequency-Shift Keying (MFSK) More than two frequencies are used More bandwidth efficient but more susceptible to error f i = f c + (2i – 1 – M)f d f c = the carrier frequency f d = the difference frequency M = number of different signal elements = 2 L L = number of bits per signal element

Multiple Frequency-Shift Keying (MFSK) * To match data rate of input bit stream, each output signal element is held for: T s =LT seconds where T is the bit period (data rate = 1/T) So, one signal element encodes L bits * will not covered in the lecture

Multiple Frequency-Shift Keying (MFSK)* Total bandwidth required 2Mf d Minimum frequency separation required 2f d =1/T s Therefore, modulator requires a bandwidth of W d =2 L /LT=M/T s

Multiple Frequency-Shift Keying (MFSK)*

Phase-Shift Keying (PSK) Two-level PSK (BPSK) Uses two phases to represent binary digits

Phase-Shift Keying (PSK) Differential PSK (DPSK) Phase shift with reference to previous bit Binary 0 – signal burst of same phase as previous signal burst Binary 1 – signal burst of opposite phase to previous signal burst

Phase-Shift Keying (PSK)* Four-level PSK (QPSK) Each element represents more than one bit

Phase-Shift Keying (PSK)* Multilevel PSK Using multiple phase angles with each angle having more than one amplitude, multiple signals elements can be achieved D = modulation rate, baud R = data rate, bps M = number of different signal elements = 2 L L = number of bits per signal element

Quadrature Amplitude Modulation QAM is a combination of ASK and PSK Two different signals sent simultaneously on the same carrier frequency

Spread Spectrum Input data are modulated using sequence of digits Spreading code or spreading sequence Generated by pseudonoise, or pseudo-random number generator Effect of modulation is to increase bandwidth of signal to be transmitted

Spread Spectrum Chart

Why Spread Spectrum What can be gained from SS? C = B Log2 (1+ S/N) Immunity from various kinds of noise and multipath distortion Can be used for hiding and encrypting signals Several users can independently use the same higher bandwidth with very little interference

Frequency Hoping Spread Spectrum (FHSS) Signal is broadcast over seemingly random series of radio frequencies A number of channels allocated for the FH signal Signal hops from frequency to frequency at fixed intervals Transmitter operates in one channel at a time Bits are transmitted using some encoding scheme At each successive interval, a new carrier frequency is selected

Frequency Hoping Spread Spectrum Chart

Frequency Hoping Spread Spectrum Channel sequence dictated by spreading code Receiver, hopping between frequencies in synchronization with transmitter, picks up message Advantages Eavesdroppers hear only unintelligible blips Attempts to jam signal on one frequency succeed only at knocking out a few bits

FHSS Using MFSK* MFSK signal is translated to a new frequency every T c seconds by modulating the MFSK signal with the FHSS carrier signal For data rate of R: duration of a bit: T = 1/R seconds duration of signal element: T s = LT seconds T c  T s - slow-frequency-hop spread spectrum T c < T s - fast-frequency-hop spread spectrum

FHSS Performance Considerations Large number of frequencies used Results in a system that is quite resistant to jamming Jammer must jam all frequencies With fixed power, this reduces the jamming power in any one frequency band

Direct Sequence Spread Spectrum (DSSS) Each bit in original signal is represented by multiple bits in the transmitted signal Spreading code spreads signal across a wider frequency band Spread is in direct proportion to number of bits used One technique combines digital information stream with the spreading code bit stream using exclusive-OR Used by IEEE b

Direct Sequence Spread Spectrum (DSSS)

DSSS Using BPSK Multiply BPSK signal, s d (t) = A d(t) cos(2  f c t) by c(t) [takes values +1, -1] to get s(t) = A d(t)c(t) cos(2  f c t) A = amplitude of signal f c = carrier frequency d(t) = discrete function [+1, -1] At receiver, incoming signal multiplied by c(t) Since, c(t) x c(t) = 1, incoming signal is recovered

DSSS Using BPSK

Summary of different Spread Spectrum technologies local oscillator (LO), power amplifier (PA)

Code-Division Multiple Access (CDMA) Basic Principles of CDMA D = rate of data signal Break each bit into k chips (k is the key) Chips are a user-specific fixed pattern Chip data rate of new channel = kD

CDMA Example If k=6 and code is a sequence of 1s and -1s For a ‘1’ bit, A sends code as chip pattern For a ‘0’ bit, A sends complement of code Receiver knows sender’s code and performs electronic decode function = received chip pattern = sender’s code

CDMA Example User A code = To send a 1 bit = To send a 0 bit = User B code = To send a 1 bit = Receiver receiving with A’s code (A’s code) x (received chip pattern) User A ‘1’ bit: 6 -> 1 User A ‘0’ bit: -6 -> 0 User B ‘1’ bit: 0 -> unwanted signal ignored

Categories of Spreading Sequences Spreading Sequence Categories PN sequences Orthogonal codes For FHSS systems PN sequences most common For DSSS systems not employing CDMA PN sequences most common For DSSS CDMA systems PN sequences Orthogonal codes

PN Sequences PN generator produces periodic sequence that appears to be random PN Sequences Generated by an algorithm using initial seed Sequence isn’t statistically random but will pass many test of randomness Sequences referred to as pseudorandom numbers or pseudonoise sequences Unless algorithm and seed are known, the sequence is impractical to predict

Important PN Properties Randomness Uniform distribution Balance property Run property Independence Correlation property Unpredictability

Linear Feedback Shift Register Implementation*

Properties of M-Sequences* Property 1: Has 2 n-1 ones and 2 n-1 -1 zeros Property 2: For a window of length n slid along output for N (=2 n-1 ) shifts, each n-tuple appears once, except for the all zeros sequence Property 3: Sequence contains one run of ones, length n One run of zeros, length n-1 One run of ones and one run of zeros, length n-2 Two runs of ones and two runs of zeros, length n-3 2 n-3 runs of ones and 2 n-3 runs of zeros, length 1

Properties of M-Sequences* Property 4: The periodic autocorrelation of a ±1 m- sequence is

Definitions Correlation The concept of determining how much similarity one set of data has with another Range between –1 and 1 1 The second sequence matches the first sequence 0 There is no relation at all between the two sequences -1 The two sequences are mirror images Cross correlation The comparison between two sequences from different sources rather than a shifted copy of a sequence with itself

Advantages of Cross Correlation The cross correlation between an m-sequence and noise is low This property is useful to the receiver in filtering out noise The cross correlation between two different m- sequences is low This property is useful for CDMA applications Enables a receiver to discriminate among spread spectrum signals generated by different m-sequences

Gold Sequences* Gold sequences constructed by the XOR of two m-sequences with the same clocking Codes have well-defined cross correlation properties Only simple circuitry needed to generate large number of unique codes In following example two shift registers generate the two m-sequences and these are then bitwise XORed

Gold Sequences*

Orthogonal Codes Orthogonal codes All pairwise cross correlations are zero Fixed- and variable-length codes used in CDMA systems For CDMA application, each mobile user uses one sequence in the set as a spreading code Provides zero cross correlation among all users Types Walsh codes Variable-Length Orthogonal codes

Walsh Codes* Set of Walsh codes of length n consists of the n rows of an n ´ n Walsh matrix: W 1 = (0) n = dimension of the matrix Every row is orthogonal to every other row and to the logical not of every other row Requires tight synchronization Cross correlation between different shifts of Walsh sequences is not zero