0 NSTX College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion.

Slides:



Advertisements
Similar presentations
Potential Upgrades to the NBI System for NSTX-Upgrade SPG, TS NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U.
Advertisements

Exploiting 3-D Fields to Improve the Efficacy of ELM Pace Making with Vertical Jogs J. M. Canik, S.P. Gerhardt, J-W. Ahn Advanced Scenario and Control.
Study of tearing mode stability in the presence of external perturbed fields Experimental validation of MARS-K/Q and RDCON codes Z.R. Wang 1, J.-K. Park.
NSTX-U T&T TSG Contributions to FY15 JRT NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U.
V. A. Soukhanovskii, NSTX FY2010 Research Forum, 1 December 2009, Princeton, NJ 1 of 7 Boundary Physics Topical Science Group Discussion Plan V. A. Soukhanovskii,
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman Final XP Review June 5, 2009 NSTX Supported by.
Raman, APS051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
NSTX Status and Plans College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York.
NSTX Team Meeting May 28, 2008 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL.
Edge Stability of Small-ELM Regimes in NSTX Aaron Sontag J. Canik, R. Maingi, R. Bell, S. Gerhardt, S. Kubota, B. LeBlanc, J. Manickam, T. Osborne, P.
Current status of high k scattering system J. Kim 1, Y. Ren 2, K-C. Lee 3 and R. Kaita 2 1) POSTECH 2) PPPL 3) UC Davis NSTX Monday Physics Meeting LSB-318,
1 Update on Run Schedule R. Raman NSTX Team Meeting PPPL, Princeton, NJ, 08 February, 2006 Work supported by DOE contract numbers DE-FG02-99ER54519 AM08,
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
Simple As Possible Plasmas (SAPP) on NSTX Adam McLean, ORNL Boundary TSG Session NSTX Research Forum Dec. 2, 2009 NSTX Supported by College W&M Colorado.
NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew.
Radiative divertor with impurity seeding in NSTX V. A. Soukhanovskii (LLNL) Acknowledgements: NSTX Team NSTX Results Review Princeton, NJ Wednesday, 1.
NSTX Team Meeting July 21,, 2011 NSTX TF Update NSTX Team Meeting July 21, 2011 NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
NSTX Effects of NTSX Upgrades on DiagnosticsFebruary 8, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns.
Prototype Multi-Energy Soft X-ray Diagnostic for EAST Kevin Tritz Johns Hopkins University NSTX-U Monday Physics Meeting PPPL, Princeton, NJ June 25 th,
Direct measurement of plasma response using Nyquist Contour Z.R. Wang 1, J.-K. Park 1, M. J. Lanctot 2, J. E. Menard 1,Y.Q. Liu 3, R. Nazikian 1 1 Princeton.
NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Inst for Nucl.
Second Switching Power Amplifier (SPA) Upgrade Physics Considerations Discussion S.A. Sabbagh 1, and the NSTX Research Team 1 Department of Applied Physics,
XP817: Transient CHI – Solenoid free Plasma Startup and Coupling to Induction Office of Science R. Raman, B.A. Nelson, D. Mueller, T.R. Jarboe, M.G. Bell.
1 R Raman, B.A. Nelson, D. Mueller 1, T.R. Jarboe, M.G. Bell 1, J. Menard 1, R. Maqueda 2 et al. University of Washington, Seattle 1 Princeton Plasma Physics.
Xp705: Multimode ion transport: TAE avalanches E D Fredrickson, N A Crocker, N N Gorelenkov, W W Heidbrink, S Kubota, F M Levinton, H Yuh, R E Bell NSTX.
Development of Improved Vertical Position Control S.P. Gerhardt, E. Kolemen ASC Session, NSTX 2011/12 Research Forum Location Date NSTX Supported by College.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle NSTX Run Usage 27 February – 5 May, 2006 NSTX Mid-Run Assessment PPPL, Princeton,
Energy Confinement Scaling in the Low Aspect Ratio National Spherical Torus Experiment (NSTX) S. M. Kaye, M.G. Bell, R.E. Bell, E.D. Fredrickson, B.P.
Some Halo Current Measurements in 2009 S.P. Gerhardt Thanks to: E. Fredrickson, H. Takahashi, L. Guttadora NSTX Results Review, 2009 NSTX Supported by.
Characterization of the LLD with a two-color infrared camera Adam McLean, ORNL J.-W. Ahn, T. Grey, R. Maingi Lithium TSG Session NSTX Research Forum Dec.
NSTX Team Meeting February 7, 2007 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U.
Supported by Office of Science NSTX H. Yuh (Nova Photonics) and the NSTX Group, PPPL Presented by S. Kaye 4 th T&C ITPA Meeting Culham Lab, UK March.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman XP Review - ASC Feb 2, 2009 NSTX Supported by College.
Supported by Office of Science NSTX S.M. Kaye, PPPL For the NSTX Research Team ITPA T&C Mtg. Naka, Japan 31 March – 2 April 2009 The Effect of Rotation.
Overview of Results from the FY10 National Spherical Torus Experiment Run Eric Fredrickson For the NSTX Team NSTX Supported by College W&M Colorado Sch.
NSTX Team Meeting December 21, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
3D Reconstruction of Incandescent Lithium and Tungsten Dust Particle Trajectories in the National Spherical Torus Experiment A.L. Roquemore, J. Nichols,
NSTX XP1031: MHD/ELM stability vs. thermoelectric J, edge J, and collisionality -NSTX Physics Mtg. 6/28/10 - S.A. Sabbagh, et al. S.A. Sabbagh 1, T.E.
Enhancement of edge stability with lithium wall coatings in NSTX Rajesh Maingi, Oak Ridge National Lab R.E. Bell, B.P. LeBlanc, R. Kaita, H.W. Kugel, J.
Effect of 3-D fields on edge power/particle fluxes between and during ELMs (XP1026) A. Loarte, J-W. Ahn, J. M. Canik, R. Maingi, and J.-K. Park and the.
First results of fast IR camera diagnostic J-W. Ahn and R. Maingi ORNL NSTX Monday Physics Meeting LSB-318, PPPL June 22, 2009 NSTX Supported by College.
NSTX NSTX TF, PF and umbrella Upgrade Internal ReviewFeb 24, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
NSTX NSTX LidsJuly 6, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar.
NSTX Team Meeting June 30, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
V. A. Soukhanovskii, NSTX FY2009 Mid-run assessment meeting, 17 June 2009, Princeton, NJ 1 of 9 NSTX Boundary Physics Topical Science Group Summary V.
Supported by Office of Science NSTX S.M. Kaye, PPPL ITPA PPPL 5-7 Oct Confinement and Transport in NSTX: Lithiumized vs non-Lithiumized Plasmas Culham.
V. A. Soukhanovskii, NSTX FY2010 Results Review, Princeton, NJ 1 of 31 Boundary Physics Topical Science Group summary V. A. Soukhanovskii, TSG Leader Lawrence.
Planning for Toroidal Lithium Divertor Target for NSTX and Supporting Experiments on CDX-U/LTX R. Kaita Boundary Physics Science Focus Group Meeting July.
Upgrades to PCS Hardware (Incomplete) KE, DAG, SPG, EK, DM, PS NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo.
NSTX 2007 MHD XP Review – J. Menard 1 Optimization of RFA detection algorithms during dynamic error field correction Presented by: J.E. Menard, PPPL Final.
Presently Planned Vacuum-Side Diagnostics for the NSTX-Upgrade Center Column NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
XP-945: ELM Pacing via Vertical Position Jogs S.P. Gerhardt, J.M. Canik, D. Gates, R. Goldston, R. Hawryluk, R. Maingi, J. Menard, S. Sabbagh, A. Sontag.
Preliminary Results from XP1020 RFA Measurements J.W. Berkery Department of Applied Physics, Columbia University, New York, NY, USA NSTX Monday Physics.
Raman, Dec051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
V. A. Soukhanovskii, XP1002 Review, 9 June 2010, Princeton, NJ 1 of 9 XP 1002: Core impurity density and P rad reduction using divertor condition modifications.
Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas S. S. Medley 1, D. Liu 2, M. V. Gorelenkova 1,
NSTX NSTX Team Meeting –Masa Ono August 15, 2014 NSTX-U Team Meeting August 15, 2014 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo.
Advanced Scenario Development on NSTX D. A. Gates, PPPL For the NSTX Research Team 50th APS-DPP meeting Dallas, TX November 17, 2008 College W&M Colorado.
NSTX-U Collaboration Status and Plans for: M.I.T. Plasma Science and Fusion Center Abhay K. Ram, Paul Bonoli, and John Wright NSTX-U Collaborator Research.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle Update on the NSTX Run Plan PPPL, Princeton, NJ, 15 May, 2006 Supported by Office.
Monitoring impact of the LLD Adam McLean, ORNL T. Gray, R. Maingi Lithium, TSG group preliminary research forum PPPL, B252 Nov. 23, 2009 NSTX Supported.
Comments on HC Measurements for NSTX- Upgrade SPG CS Upgrade Meeting 11/2/11 NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
J-W. Ahn 1 K.F. Gan 2, F. Scotti 3, R. Maingi 1, J.M. Canik 1, T.K. Gray 1, J.D. Lore 1, A.G. McLean 4, A.L. Roquemore 3, V.A. Soukhanovskii 4 and the.
Correlation between Electron Transport and Shear Alfven Activity in NSTX College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins.
Supported by Office of Science NSTX K. Tritz, S. Kaye PPPL 2009 NSTX Research Forum PPPL, Princeton University Dec. 8-10, 2008 Transport and Turbulence.
Supported by Office of Science NSTX S.M. Kaye, PPPL For the NSTX Research Team T&C ITPA Mtg. Naka, Japan 31 March – 2 April 2009 Electron Scale Turbulence.
Neutron diagnostic calibration transfer XMP D. Darrow and the NSTX Research Team XMP & XP review meeting Control Room Annex June 11, 2015 NSTX-U Supported.
XP-950: XP-950: Dependence of metallic impurity accumulation on I p and the outer gap in the presence of lithium deposition S. Paul, S. P. Gerhardt are.
NSTX NSTX Upgrade Project – Final Design ReviewJune 22-24, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
Presentation transcript:

0 NSTX College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Illinois U Maryland U Rochester U Washington U Wisconsin Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI KBSI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec R. J. Maqueda, PPPL S. J. Zweben, D. P. Stotler (PPPL) J. R. Myra, D. A. Russell, D. A. D’Ippolito (Lodestar Res. Corp.) J.-W. Ahn, A. McLean, R. Maingi (ORNL) and the NSTX Research Team NSTX Results Review Nov. 30 – Dec. 1, 2010 Princeton, NJ Supported by GPI and the SOL width

1 Introduction The Gas Puff Imaging diagnostic (GPI) is used to study the edge/scrape-off layer (SOL) turbulence and intermittency in NSTX. This turbulence (and blob generation) are greatly reduced in H-modes compared to L-modes. This work studies the edge characteristics during H-mode, where the edge activity varies from quiescent (low power and Ohmic discharges) to highly active (high power discharges). Work is part of ongoing experimental/modeling study, with the participation of Lodestar Res. Corp.

2 GPI diagnostic Camera used to view visible D  emission from 24 x 24 cm box of the edge plasma just above low field side (outer) midplane. Camera captures images at up to ~ frames/s. Deuterium gas puff is injected to increase image contrast and brightness. Gas puff does not perturb local (nor global) plasma. View aligned along B field line to see 2-D structure  B. Typical edge phenomena has a long parallel wavelength, filament structure. The D  image intensity (I  ) is given by: I  = n o A L* F(n e,T e ) wheren o is the neutral deuterium density Ais the radiative decay rate L*is the line of sight integration length (and calibration factor) F(n e,T e )is the population ratio for the emitting energy levels, obtained from Degas2 modeling (D. Stotler) For more details: R.J. Maqueda et al., Rev. Sci. Instrum. 74(3), p. 2020, 2003.

3 Midplane turbulence and blobs in H- mode Quiet to Active Ohmic H-mode, to ms 2.6 MW NBI early H-mode phase, to ms 3.9 MW NBI late H-mode phase, to ms 3.9 MW NBI late H-mode phase, to ms 24 cm

4 Turbulence/blob activity: Quiet to Active R mid – R sep (cm) mid Skewness  I/I rms I D  (a.u.) Ohmic, H-mode 2.6 MW, early H 3.9 MW, late H Low power (Ohmic) H-modes show no turbulence or blob activity. As power is increased, early H-mode phase shows a quiet edge (~R sep ) and an increasing level of activity in the SOL. Mean SOL D  emission remains low. Late in the H-mode phase (high P nbi ) the SOL average D  emission is broad with large contribution from intermittent (large skewness) fluctuations. Intermittency is also seen on the edge. 20 ms long averages

5 Midplane SOL “D  width” increases with loss power SOL Skewness SOL  I/I rms Normalized SOL D  (a.u.) P loss (MW) RMS fluctuation level and skewness high in all conditions. D  profile broadens with P loss P loss = P  + P NBI - P rad - dW/dt Measurements 5 cm outside emission peak -> 3- 5 cm outside separatrix. Ohmic H-modes

6 Normalized SOL D  (a.u.) n e (10 13 cm -3 )n ped T e (10 13 cm -3 )T ped Measurements 5 cm outside emission peak -> 3-5 cm outside separatrix. Thomson scattering data by B. LeBlanc and A. Diallo Midplane SOL “D  width” scales also with pedestal height

7 n e (10 13 cm -3 )n ped T e (10 13 cm -3 )T ped Thomson scattering data by B. LeBlanc and A. Diallo Edge  I/I D  peak Edge fluctuations (may) scale also with pedestal height Substantial difference observed during Ohmic H-modes!

8 Normalized SOL D  (a.u.) Intermittent blobs are more frequent as the midplane SOL “D  width” increases Blobs detected at a fixed position in the scrape-off layer (5 cm outside emission peak -> 3-5 cm outside separatrix). Blob frequency (kHz)

9 J. R. Myra, et al., accepted Phys. Plasmas. Midplane turbulence is the main contributor to the SOL heat flux width. Width is set by: Intermittent separatrix-spanning convective cells Sheared flows Blob trapping (“gutter”) or emission. The SOLT code: results D. A. Russell, et al., Phys. Plasmas 16(12), , Scrape-Off-Layer Turbulence (SOLT) code 2D fluid turbulence code: model SOL in outer midplane –classical parallel + turbulent cross-field transport evolves n e, T e,  with parallel closure relations –sheath connected, with flux limits, collisional strongly nonlinear:  n/n ~ 1  blobs model supports drift waves, curvature-driven interchange modes, sheath instabilities flexible sources for n e, T e, v y

10 D  lower divertor (a.u.) D  GPI average (a.u.) Edge  I/I rms t (s)R div (m) L-modeOhmic H-mode L-mode H-mode P div (MW/m 2 ) Shot Theodor heat profiles (ORNL) Quiet H-modes result in change in divertor heat profiles Is this change due to reduction in the near SOL/edge fluctuation level? Can a similar change be observed due to fluctuation reductions during H-mode? Outer strike point (EFIT02)

11 t (s) D  lower divertor (a.u.) D  GPI average (a.u.) Edge  I/I rms Shot Extreme low fluctuation levels observed H-mode, 3 MW NBI auxiliary heating. ~5% RMS fluctuation levels on edge comparable to Ohmic H-mode. Blobless. Change at ~0.53 ms to more typical ~15% RMS fluctuations. Does this change in fluctuations affect transport and divertor heat deposition profile?

12 Summary and conclusions Edge activity during H-mode ranges from quiescent in low power and Ohmic discharges to highly active in high power discharges. Midplane SOL width, as measured by average D  light, increases with separatrix loss power. SOL fluctuations and skewness maintained at high levels as loss power increases, positive scaling with pedestal height also observed. Blobs are more frequent as the SOL width increases. Modeling of blob formation (SOLT by Lodestar) show "entrained" and "detaching" blobs. Even within a given H-mode shot, different levels of fluctuations (and blob activity) can be seen... Does this indicate an important overall role for edge turbulence? (transport and divertor heat profiles)