Overview of the High Intensity Neutrino Source Jean-Paul Carneiro FNAL Accelerator Physics Department FNAL Accelerator Physics and Technology Seminar February.

Slides:



Advertisements
Similar presentations
Feb 09, 2012 L. Vorobiev, I. RakhnoPage 1 Multi-Turn Stripping Injection and Foil Heating with Application to Project X Presentation Based on: Phys. Rev.
Advertisements

Page 1 Collider Review Retreat February 24, 2010 Mike Spata February 24, 2010 Collider Review Retreat International Linear Collider.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
First operation of the TTF2 injector with beam Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Hamburg, 16 Sept 2003.
Chris Tennant Jefferson Laboratory March 15, 2013 “Workshop to Explore Physics Opportunities with Intense, Polarized Electron Beams up to 300 MeV”
CALCULATIONS OF THE LCLS INJECTOR USING ASTRA Jean-Paul Carneiro DESY Hamburg ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations.
1 M. Popovic NFMC Collaboration Meeting IIT Muon (Pre)Acceleration for 8 GeV Proton Driver Linac Milorad Popovic FNAL 14-March.
Thomas Roser Snowmass 2001 June 30 - July 21, MW AGS proton driver (M.J. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas,
 An h=4 (30 MHz) RF system will be used for electron operation. For protons, this would correspond to h=56, and the 1 kV maximum gap voltage would only.
Paul Derwent 30 Nov 00 1 The Fermilab Accelerator Complex o Series of presentations  Overview of FNAL Accelerator Complex  Antiprotons: Stochastic Cooling.
ABSTRACT The International Design Study for the Neutrino Factory (IDS- NF) baseline design 1 involves a complex chain of accelerators including a single-pass.
LINAC4 STATUS Alessandra M. Lombardi for the LINAC4 team 1.Motivation and goals 2.Status of Linac4 2 years after official start of the project ( )
Ion Source and RFQ Douglas Moehs Fermilab Accelerator Advisory Committee May 10 th – 12 th, 2006 Thanks to Martin Stockli (SNS), Robert Welton (SNS), Jens.
Generation and Characterization of Magnetized Bunched Electron Beam from DC Photogun for MEIC Cooler Laboratory Directed Research and Development (LDRD)
J. Rodnizki SARAF, Soreq NRC HB2008, August, 2008 Nashville TN Lattice Beam dynamics study and loss estimation for SARAF/ EURISOL driver 40/60 MeV 4mA.
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
Brookhaven Science Associates U.S. Department of Energy AGS Upgrade and Super Neutrino Beam DOE Annual HEP Program Review April 27-28, 2005 Derek I. Lowenstein.
Fermilab, Proton Driver, Muon Beams, Recycler David Neuffer Fermilab NufACT05.
Low Emittance RF Gun Developments for PAL-XFEL
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
Proton Driver: Status and Plans C.R. Prior ASTeC Intense Beams Group, Rutherford Appleton Laboratory.
EDM2001 Workshop May 14-15, 2001 AGS Intensity Upgrade (J.M. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas, S.Y. Zhang) Proton.
S2E optics design and particles tracking for the ILC undulator based e+ source Feng Zhou SLAC ILC e+ source meeting, Beijing, Jan. 31 – Feb. 2, 2007.
REFERENCES [1] C.Y. Tan, FNAL Beams-doc-3646-v16, 2011 [2] V.N. Aseev, TRACK, the beam dynamics code, PAC05 [3] S. Kurennoy, LA-UR TRANSMISSION.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
Overview of ERL MEIC Cooler Design Studies S.V. Benson, Y. Derbenev, D.R. Douglas, F. Hannon, F. Marhauser, R. A Rimmer, C.D. Tennant, H. Zhang, H. Wang,
Beam Modulation due to Longitudinal Space Charge Zhirong Huang, SLAC Berlin S2E Workshop 8/18/2003.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
Optics considerations for ERL test facilities Bruno Muratori ASTeC Daresbury Laboratory (M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith,
Project X Injector Experiment (PXIE) Sergei Nagaitsev Dec 19, 2011.
Fermilab Proton Driver Project Weiren Chou for Bill Foster Fermilab, U.S.A. October 20, 2004 Presentation at the Proton Driver Session ICFA-HB2004, Bensheim,
Fermilab Proton Driver and Muons David Johnson Fermilab Neutrino Factory Muon Collider Collaboration Meeting March 14, 2006.
Beam Dynamics and Linac Simulation Petr Ostroumov Fermilab Accelerator Advisory Committee May 10 th – 12 th, 2006.
FNAL 8 GeV SC linac / HINS Beam Dynamics Jean-Paul Carneiro FNAL Accelerator Physics Center Peter N. Ostroumov, Brahim Mustapha ANL March 13 th, 2009.
Overview and Status of the Fermilab High Intensity Neutrino Source R&D Program Giorgio Apollinari for Bob Webber.
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
Y. Roblin, D. Douglas, F. Hannon, A. Hofler, G. Krafft, C. Tennant EXPERIMENTAL STUDIES OF OPTICS SCHEMES AT CEBAF FOR SUPPRESSION OF COHERENT SYNCHROTRON.
LDRD: Magnetized Source JLEIC Meeting November 20, 2015 Riad Suleiman and Matt Poelker.
J-PARC Accelerator and Beam Simulations Sep. 7th, SAD2006 Masahito Tomizawa J-PARC Main Ring G., KEK Outline of J-PARC Accelerator Characteristics of High.
Christopher Gerth DL/RAL Joint Workshop 28-29/4/04 Modelling of the ERLP injector system Christopher Gerth ASTeC, Daresbury Laboratory.
Comparison of Fermilab Proton Driver to Suggested Energy Amplifier Linac Bob Webber April 13, 2007.
Proton Driver Design Keith Gollwitzer Fermilab February 19, 2014.
HINS Linac Simulations : Benchmarking, Jitter and Stripping. Jean-Paul Carneiro FNAL Accelerator Physics Center Accelerator Physics and Technology Workshop.
Concept Preliminary Estimations A. Kolomiets Charge to mass ratio1/61/8 Input energy (MeV/u) Output energy (MeV/u)2.5(3.5) Beam.
D. Raparia2005/01/27-28 MAC Review EBIS Injector Linac Optics I I D.Raparia EBIS Review 2005/01/27-28 HEBT Booster Injection.
Marcel Schuh CERN-BE-RF-LR CH-1211 Genève 23, Switzerland 3rd SPL Collaboration Meeting at CERN on November 11-13, 2009 Higher.
2 February 8th - 10th, 2016 TWIICE 2 Workshop Instability studies in the CLIC Damping Rings including radiation damping A.Passarelli, H.Bartosik, O.Boine-Fankenheim,
ICFA Workshop on Future Light Source, FLS2012 M. Shimada A), T. Miyajima A), N. Nakamura A), Y. Kobayashi A), K. Harada A), S. Sakanaka A), R. Hajima B)
Development of High Current Bunched Magnetized Electron DC Photogun MEIC Collaboration Meeting Fall 2015 October 5 – 7, 2015 Riad Suleiman and Matt Poelker.
Ultra-short electron bunches by Velocity Bunching as required for Plasma Wave Acceleration Alberto Bacci (Sparc Group, infn Milano) EAAC2013, 3-7 June,
F Sergei Nagaitsev (FNAL) Aug Project X ICD2 Briefing.
ELI PHOTOINJECTOR PARAMETERS: PRELIMINARY ANALYSIS AND SIMULATIONS C. RONSIVALLE.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
FFAG Studies at BNL Alessandro G. Ruggiero Brookhaven National Laboratory FFAG’06 - KURRI, Osaka, Japan - November 6-10, 2006.
Space-charge compensation experiments at ASTA Vladimir Shiltsev, Moses Chung 16 July Advanced Accelerator Concepts Workshop, San Jose, CA.
High Intensity Neutrino Source HINS Linac Front-End R&D --- Systems Integration, Beam Diagnostics Needs, and Meson Lab Setup Bob Webber.
Primary Beam Lines for the Project at CERN
Sara Thorin, MAX IV Laboratory
Linac4 Beam Characteristics
Physics design on the main linac
Progress in the Multi-Ion Injector Linac Design
NC Accelerator Structures
1- Short pulse neutron source
Muon Acceleration using 8 GeV Proton Driver Linac
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
LHC (SSC) Byung Yunn CASA.
MEBT1&2 design study for C-ADS
Physics Design on Injector I
Update on ERL Cooler Design Studies
Multi-Ion Injector Linac Design – Progress Summary
Presentation transcript:

Overview of the High Intensity Neutrino Source Jean-Paul Carneiro FNAL Accelerator Physics Department FNAL Accelerator Physics and Technology Seminar February 8 th 2007

Fermilab 8 GeV Superconducting H-minus LINAC Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 MI10 ACCELERATING SECTION ~678 meters TRANSPORT LINE ~1 km

Fermilab 8 GeV H-minus LINAC : Main parameters Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 G. W. Foster (Editor) An 8-GeV Superconducting Linac Proton Driver (2005) CREDITS INITIAL ULTIMATE Linac Particles per macropulse : 1.56E+14 Linac Macropulse Width : 3 ms 1 ms Linac Pulse Repetition Rate :2.5 Hz10 Hz Linac Beam Power: 0.5 MW2.0 MW

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 OUTLINE 1 / Accelerating Section : Code benchmarking TRACK (ANL, P. Ostroumov) ASTRA (DESY, K. Floettmann) 2 / Transport Line : Implementation into TRACK Start-to-end parallel simulations (~1.7 km) 3/ The 60 MeV Front End Setup (Meson Linac)

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 PART I THE ACCELERATING SECTION

ACCELERATING SECTION : LAYOUT (P. Ostroumov, ANL) Z~4 m W~2.5 MeV ~16 m ~10 MeV ~60 m ~120 MeV ~140 m ~420 MeV ~230 m ~1.2 GeV ~678 m ~8.0 GeV Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07

ASTRA (K. Floettmann, DESY) TRACK (P. Ostroumov, ANL) Integration of Equation of motion by Runge-Kutta Method of Forth Order id Read arbitrary input distribution id Read 2D and 3D external E fields id Read 2D and 3D external B fields Read only 2D external B fields 3D space charge (Free Space) 3D space charge (Image Charge) Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 TRACK / ASTRA : BRIEF DESCRIPTION Handle RFQ’s Do not handle RFQ’s

BENCHMARKING METHODOLOGY Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 Benchmark TRACK/ASTRA from RFQ to last accelerating cavity ( 674 m, 454 Cavities, 55 Sol., 117 Quads) First Zero Current (10k particles) Then for mA (200k macro-particles, 3D Space Charge) 6 beam parameters : RMS Trans. Size, RMS Trans. Emittance RMS Bunch Length, RMS Long. Emittance Energy, RMS energy spread

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 TRACK / ASTRA : ZERO CURRENT KINETIC ENERGY

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 ~2 % RMS ENERGY SPREAD TRACK / ASTRA : ZERO CURRENT

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 ~2 % RMS BUNCH LENGTH TRACK / ASTRA : ZERO CURRENT

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 ~0.7 % RMS LONG. EMITTANCE TRACK / ASTRA : ZERO CURRENT

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 ~10 %~1 % RMS ENVELOPE TRACK / ASTRA : ZERO CURRENT

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 ~0.8 % RMS TRANSVERSE EMITTANCE TRACK / ASTRA : ZERO CURRENT

TRACK / ASTRA : ZERO CURRENT Résumé Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 (+0.02 %) [mm]RMS SIZE Y ASTRATRACKUNITS [mm-mrad] [mm] [keV-mm] [mm] [keV] [MeV] KINETIC ENERGY RMS NORM. EMIT X RMS SIZE X RMS NORM. EMIT Z RMS BUNCH LENGTH RMS ENERGY SPREAD RMS NORM. EMIT Y[mm-mrad] (-2.47 %) (+1.99 %) (+0.73 %) (+9.94 %) (-1.02 %) (+0.76 %) (+0.77 %)

TRACK / ASTRA : 3D Uniform Ellipsoidal Bunch Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 3D UNIFORM ELLIPSOID 500k macro-particules (TRACK/ASTRA) CREDITS : T. Wangler, RF Linear Accelerators, p. 277.

TRACK / ASTRA : 3D Uniform Ellipsoidal Bunch Transverse Space Charge FieldsLongitudinal Space Charge Fields

RMS ENERGY SPREAD Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 ~8 % TRACK / ASTRA : mA

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 TRACK / ASTRA : mA RMS BUNCH LENGTH

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 RMS LONG. EMITTANCE ~10 % TRACK / ASTRA : mA RMS LONG. EMITTANCE

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 ~3 %~9 % TRACK / ASTRA : mA RMS TRANSVERSE EMITTANCE

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 ~6 %~1 % TRACK / ASTRA : mA RMS ENVELOPE

(-0.04 %) [mm]RMS SIZE Y ASTRATRACKUNITS [mm-mrad] [mm] [keV-mm] [mm] [keV] [MeV] KINETIC ENERGY RMS NORM. EMIT X RMS SIZE X RMS NORM. EMIT Z RMS BUNCH LENGTH RMS ENERGY SPREAD TRACK / ASTRA : mA Résumé Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 RMS NORM. EMIT Y[mm-mrad] (+8.15 %) ( %) (+6.25 %) (+1.52 %) (+8.83 %) (+3.09 %)

CONCLUSION : TRACK / ASTRA BENCHMARKING Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 TRACK / ASTRA Agreement Within 10% (Zero Current and 3D Space Charge) ``Benchmarking of simulation codes for high intensity hydrogen ion linacs’’ submitted to Journal of Instrumentation.

Jean-Paul CarneiroCALCULATIONS OF THE LCLS INJECTOR USING ASTRA L01 L02 SOLENOID RF GUN + SOLENOID 9.4 M LCLS INJECTOR : ASTRA / PARMELA

Jean-Paul CarneiroCALCULATIONS OF THE LCLS INJECTOR USING ASTRA LCLS INJECTOR : ASTRA / PARMELA

Jean-Paul CarneiroASTRA SIMULATIONS OF THE LCLS INJECTOR EXIT L02 (8.42 M) – RESUME UNITSASTRAPARMELA MOMEMTUM[MeV/c] RMS ENERGY SPREAD[%] RMS SIZE X[mm] RMS NORM. EMIT X[mm-mrad] RMS SIZE Y[mm] RMS NORM. EMIT Y[mm-mrad] RMS BUNCH LENGTH[mm] (0.5 %) (6%) (10%) (2 %) (10%) (2 %)

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 PART II THE TRANSPORT LINE

8 GeV TRANSPORT LINE TO MI: LAYOUT (D. Johnson et al., FNAL) Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 Stripping foil ARC 1ARC 2 Matching + Collimation DEBUNCHER CAVITY RT-SUPERSTRUCTURE 17 CELL (T. Khabiboulline, FNAL-TD) ~1 km (8 GeV, Space Charge Off)

TRANSVERSE PARTICLE DISTRIBUTION AT THE FOIL (TRACK) Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 No CollimatorWith Collimators

LONGITUDINAL PHASE SPACE AT THE FOIL (TRACK) Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 Debuncher OFFDebuncher ON

TRANSPORT LINE : MAD SIMULATIONS Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 From D. Johnson (FNAL)

TRANSPORT LINE : TRACK / ELEGANT (M. Borland, ANL) Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 DISPERSION [m]

TRANSPORT LINE : TRACK / ELEGANT Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 BETA FUNCTION

~10 H 40 mn ~1 H 18 mn Acc. Section (3D Space Ch.) Transport Line (No Space Charge) TRANSPORT LINE : TRACK / PARALLEL TRACK (J. Xu, ANL) Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07

TRACK START-TO-END SIMULATIONS Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 TRANSV. RMS EMITTANCE

TRACK START-TO-END SIMULATIONS Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 HINS longitudinal phase space RMS ENERGY SPREAD

TRACK SIMULATIONS : CONCLUSION & NEXT STEPS Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 Start-to-End simulations (from RFQ to stripping foil) implemented into TRACK The 1.7 km beamline runs on parallel (64 CPU) at ANL-BlueGene computer Takes 1H18 mn to perform, 200k particules. NEXT STEPS IN HINS SIMULATIONS 1/ Halo Studies (1M to 80M particle distribution on 64 to 256 CPUs) 2/ Jitter + Misalignment Studies (up to 100 CPU on ANL-JAZZ computer) 3/ Implementation H-minus stripping into TRACK (Magnetic, Residual Gas and Blackbody radiation)

TRACK SIMULATION : BLACKBODY STRIPPING Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 H. C. Bryant and G. H. Herling “Atomic physics with a relativistic H- beam” Journal of Modern Optics, January 2006 CREDITS C. Hill “Preliminary Notes: H- Ion Stripping in Transport by Thermal Photons” FERMILAB-Internal Memorandum (Dec. 2004) – unpublished - Hill’s Equation of Total Loss per Unit Length : with Numerical Application : 300 K : 1/L=7.86E-7 m-1 × 1.56E14 p/sec × 1.28E-9 J ≈ 0.15 W/m (1 Hz) 80 K : 1/L=2.7E-10 m-1 × 1.56E14 p/sec × 1.28E-9 J ≈ 5.3E-5 W/m (1 Hz) W. Chou “8 GeV H- Ions : Transport and Injection” PAC05

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 PART III THE MESON LINAC

MESON LINAC : LAYOUT (~60 MeV, ~48 m) Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 Cooling ring dipole Effective Magnetic Length ~1.3 m SQA Quads “Old 8 GeV to MR line” Effective Magnetic Length ~45 cm Main Ring Trim Quads Effective Magnetic Length ~35 cm

MESON LINAC : TRACK SIMULATIONS Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07

MESON HALL : SOUTH VIEW Capture Cavity II Cave

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 MESON HALL : NORTH VIEW

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 MESON LINAC : MODULATOR, PULSE TRANSFORMER, KLYSTRON

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 MESON LINAC : KLYSTRON, RF CONTROL SYSTEM

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 FERMILAB Proton Source + LEBT (H. Piekarz, C. Schmidt, D. Moehs) Installed in MS6 building ~15 mA, 66 µs, 15 Hz

Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 FERMILAB magnetron H- source (D. Moehs) ~20 mA, 3 ms, 1 Hz (January 2007)

MESON LINAC : CONCLUSION Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 Modulator, Pulse Transformer and Klystron installed into Meson Hall Expected delivery time for RFQ : Summer 2007 Expected first 2.5 MeV beam : Winter 2007

Acknowledgments G. Apollinari (FNAL), S. Aseev (ANL), M. Borland (ANL), K. Floettmann (DESY), B. Foster (ex-FNAL), I. Gonin, C. Hill (FNAL), D. Johnson (FNAL), T. Khabiboulline, D. Moehs (FNAL), B. Mustapha (ANL), P. Ostroumov (ANL), H. Piekarz (FNAL), C. Schmidt (FNAL), V. Shiltsev (FNAL), B. Webber (FNAL), D. Wildman (FNAL), J. Xu (ANL). CONCLUSION and ACKNOWLEDGMENTS Jean-Paul Carneiro FNAL Accelerator Physics and Technology Seminar, Feb 8 th 07 Start-to-End simulation of the 8 GeV H-minus linac implemented into TRACK Jitter Studies and impact into stripping efficiency and MI losses (ESME ?) Benchmarking the code with experimental datas (Meson Linac)